OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 5930–5941

A responsivity-based criterion for accurate calibration of FTIR emission spectra: identification of in-band low-responsivity wavenumbers

Penny M. Rowe, Steven P. Neshyba, Christopher J. Cox, and Von P. Walden  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 5930-5941 (2011)
http://dx.doi.org/10.1364/OE.19.005930


View Full Text Article

Enhanced HTML    Acrobat PDF (1245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectra measured by remote-sensing Fourier transform infrared spectrometers are often calibrated using two calibration sources. At wavenumbers where the absorption coefficient is large, air within the optical path of the instrument can absorb most calibration-source signal, resulting in extreme errors. In this paper, a criterion in terms of the instrument responsivity is used to identify such wavenumbers within the instrument bandwidth of two remote-sensing Fourier transform infrared spectrometers. Wavenumbers identified by the criterion are found to be correlated with strong absorption line-centers of water vapor. Advantages of using a responsivity-based criterion are demonstrated.

© 2011 OSA

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 18, 2010
Revised Manuscript: February 25, 2011
Manuscript Accepted: March 8, 2011
Published: March 16, 2011

Citation
Penny M. Rowe, Steven P. Neshyba, Christopher J. Cox, and Von P. Walden, "A responsivity-based criterion for accurate calibration of FTIR emission spectra: identification of in-band low-responsivity wavenumbers," Opt. Express 19, 5930-5941 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-5930


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part I: instrument design,” J. Atmos. Ocean. Technol. 21(12), 1763–1776 (2004a). [CrossRef]
  2. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” Appl. Opt. 27(15), 3210–3218 (1988). [CrossRef] [PubMed]
  3. L. A. Sromovsky, “Radiometric errors in complex Fourier transform spectrometry,” Appl. Opt. 42(10), 1779–1787 (2003). [CrossRef] [PubMed]
  4. P. M. Rowe, S. P. Neshyba, and V. P. Walden, “A responsivity-based criterion for accurate calibration of FTIR emission spectra: theoretical development and bandwidth estimation,” Opt. Express 19(6) 5451-5463 (2011) [CrossRef] [PubMed]
  5. G. Lesins, L. Bourdages, T. Duck, J. Drummond, E. Eloranta, and V. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the high arctic at eureka,” Atmos. Chem. Phys. 9(6), 1847–1862 (2009). [CrossRef]
  6. A. Shimota, H. Kobayashi, and S. Kadokura, “radiometric calibration for the airborne interferometric monitor for greenhouse gases simulator,” Appl. Opt. 38(3), 571–576 (1999). [CrossRef]
  7. P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “the marine-atmospheric emitted radiance interferometer: a high-accuracy, seagoing infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18(6), 994–1013 (2001). [CrossRef]
  8. S. Chandrasekhar, Radiative Transfer. (Dover, 1960).
  9. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005). [CrossRef]
  10. S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transf. 91(2), 233–244 (2005). [CrossRef]
  11. R. Knuteson, Cooperative Institute for Meteorological Satellite Studies – SSEC, University of Wisconsin-Madison, 1225 W. Dayton St., Madison, WI 53706 (personal communication, 2010).
  12. R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, “Atmospheric emitted radiance interferometer. Part II: instrument performance,” J. Atmos. Ocean. Technol. 21(12), 1777–1789 (2004b). [CrossRef]
  13. P. Rowe, L. Miloshevich, D. Turner, and V. Walden, “Dry bias in Vaisala RS90 radiosonde humidity profiles over antarctica,” J. Atmos. Ocean. Technol. 25(9), 1529–1541 (2008). [CrossRef]
  14. Data from the AERI operated at the North Slope of Alaska is available at http://www.archive.arm.gov .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited