OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6093–6099

Time domain switching / demultiplexing using four wave mixing in GaInP photonic crystal waveguides

I. Cestier, A. Willinger, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, G. Lehoucq, and A. De Rossi  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6093-6099 (2011)
http://dx.doi.org/10.1364/OE.19.006093


View Full Text Article

Enhanced HTML    Acrobat PDF (839 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe dynamical four wave mixing (FWM) functionalities of an GaInP photonic crystal waveguide. A W1 waveguide was used to wavelength convert 100ps pulses and for sampling a 10.56Gbit/s data stream so as to time demultiplex it into 16 or 32 channels. In all cases, the extracted pulses at the idler wavelength are undistorted and have a high signal to noise ratio proving the high efficiency and the versatility of the FWM process in the GaInP PhC waveguides we used.

© 2011 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.4320) Optical devices : Nonlinear optical devices
(130.5296) Integrated optics : Photonic crystal waveguides
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Integrated Optics

History
Original Manuscript: January 4, 2011
Revised Manuscript: February 8, 2011
Manuscript Accepted: February 14, 2011
Published: March 17, 2011

Citation
I. Cestier, A. Willinger, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, G. Lehoucq, and A. De Rossi, "Time domain switching / demultiplexing using four wave mixing in GaInP photonic crystal waveguides," Opt. Express 19, 6093-6099 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6093


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express 15, 16604-16644 (2007). [CrossRef] [PubMed]
  2. T. Baba, "Slow light in photonics crystals," Nat. Photonics 2, 465-473 (2008). [CrossRef]
  3. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008). [CrossRef]
  4. S. Combrié, A. De Rossi, Q. Tran, and H. Benisty, "GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55μm," Opt. Lett. 33, 1908-1910 (2008). [CrossRef] [PubMed]
  5. S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, "High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption," Appl. Phys. Lett. 95, 221108 (2009). [CrossRef]
  6. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, "Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect," Opt. Express 17, 7206-7216 (2009). [CrossRef] [PubMed]
  7. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides," Nat. Photonics 3, 206-210 (2009). [CrossRef]
  8. J. F. McMillan, M. Yu, D. Kwong, and C. W. Wong, "Observation of four-wave mixing in slow-light silicon photonic crystal waveguides," Opt. Express 18, 15484-15497 (2010). [CrossRef] [PubMed]
  9. K. Suzuki, Y. Hamachi, and T. Baba, "Fabrication and characterization of chalcogenide glass photonic crystal waveguides," Opt. Express 17, 22393-22400 (2009). [CrossRef]
  10. K. Suzuki, and T. Baba, "Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides," Opt. Express 18, 26675-26685 (2010). [CrossRef] [PubMed]
  11. C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, "Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides," Opt. Express 17, 22442-22451 (2009). [CrossRef]
  12. A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, "Resonant second-harmonic generation in a GaAs photonic crystal waveguide," Phys. Rev. B 68, 161306 (2003). [CrossRef]
  13. H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, "Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides," Appl. Phys. Lett. 93, 051114 (2008). [CrossRef]
  14. X. Checoury, Z. Han, and P. Boucaud, "Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation," Phys. Rev. B 82, 041308 (2010). [CrossRef]
  15. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, "Highly efficient four wave mixing in GaInP photonic crystal waveguides," Opt. Lett. 35, 1440-1442 (2010). [CrossRef] [PubMed]
  16. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, "Four-wave mixing in slow light engineered silicon photonic crystal waveguides," Opt. Express 18, 22915-22927 (2010). [CrossRef] [PubMed]
  17. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005). [CrossRef] [PubMed]
  18. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, "Frequency conversion over two-thirds of an octave in silicon nanowaveguides," Opt. Express 18, 1904-1908 (2010). [CrossRef] [PubMed]
  19. A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, "Wavelength multicasting in silicon photonic nanowires," Opt. Express 18, 18047-18055 (2010). [CrossRef] [PubMed]
  20. K. Lengle, A. Akrout, M. Costa e Silva, L. Bramerie, S. Combrié, P. Colman, J.-C. Simon, and A. De Rossi, "10GHz Demonstration of Four-Wave-Mixing in Photonic Crystal Waveguides," 36th European Conference and Exhibition on Optical Communication (ECOC 2010), paper P2.24. [CrossRef]
  21. B. Corcoran, M. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, "Ultra-compact 160Gb/s optical switching using slow light in a photonic crystal waveguide," post deadline paper, Australian Conference on Optical Fibre Technology (ACOFT) (2010).
  22. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, "Temporal solitons and pulse compression in photonic crystal waveguides," Nat. Photonics 4, 862-868 (2010). [CrossRef]
  23. S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, "Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications," J. Vac. Sci. Technol. B 23, 1521 (2005). [CrossRef]
  24. Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, "Photonic crystal membrane waveguides with low insertion losses," Appl. Phys. Lett. 95, 061105 (2009). [CrossRef]
  25. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and A. L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005). [CrossRef]
  26. M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, "Theory of slow light enhanced four-wave mixing in photonic crystal waveguides," Opt. Express 18, 21024-21029 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited