OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6141–6148

Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials

Jixiang Dai, Minghong Yang, Yun Chen, Kun Cao, Hansheng Liao, and Pengcheng Zhang  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6141-6148 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (944 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



WO3-Pd composite films were deposited on the side-face of side-polished fiber Bragg grating as sensing elements by magnetron sputtering process. XRD result indicates that the WO3-Pd composite films are mainly amorphous. Compared to standard FBG coated with same hydrogen sensitive film, side-polished FBG significantly increase the sensor’s sensitivity. When hydrogen concentrations are 4% and 8% in volume percentage, maximum wavelength shifts of side-polished FBG are 25 and 55 pm respectively. The experimental results show the sensor’s hydrogen response is reversible, and side-polished FBG hydrogen sensor has great potential in hydrogen’s measurement.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(310.6870) Thin films : Thin films, other properties

ToC Category:

Original Manuscript: January 20, 2011
Revised Manuscript: March 4, 2011
Manuscript Accepted: March 4, 2011
Published: March 17, 2011

Jixiang Dai, Minghong Yang, Yun Chen, Kun Cao, Hansheng Liao, and Pengcheng Zhang, "Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials," Opt. Express 19, 6141-6148 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999). [CrossRef]
  2. S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31(8), 625–636 (1999). [CrossRef]
  3. S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1-3), 142–145 (2000). [CrossRef]
  4. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005). [CrossRef] [PubMed]
  5. D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009). [CrossRef]
  6. M. Yang, Y. Sun, D. Zhang, and D. Jiang, “Using Pd/WO3 composite thin films as sensing materials for optical fiber hydrogen sensors,” Sens. Actuators B Chem. 143(2), 750–753 (2010). [CrossRef]
  7. M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B Chem. 22(2), 155–163 (1994). [CrossRef]
  8. X. B. évenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clément, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67, 57–67 (2000). [CrossRef]
  9. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008). [CrossRef]
  10. C. Ma and A. Wang, “Optical fiber tip acoustic resonator for hydrogen sensing,” Opt. Lett. 35(12), 2043–2045 (2010). [CrossRef] [PubMed]
  11. M. Buric, T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Multiplexable Low-Temperature Fiber Bragg Grating Hydrogen Sensors,” IEEE Photon. Technol. Lett. 21(21), 1594–1596 (2009). [CrossRef]
  12. B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999). [CrossRef]
  13. C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008). [CrossRef] [PubMed]
  14. M. Aleixandrea, P. Correderab, M. L. Hernanzb, I. Sayago, M. C. Horrillo, and J. Gutierrez-Monreal, “Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations,” in Proceedings of IEEE Conference on Electron Device (Institute of Electrical and Electronics Engineers, Spanish, 2007), pp. 223–225.
  15. J. H. Lee, J. H. Kim, Y. G. Han, S. H. Kim, and S. B. Lee, “Investigation of Raman fiber laser temperature probe based on fiber Bragg gratings for long-distance remote sensing applications,” Opt. Express 12(8), 1747–1752 (2004). [CrossRef] [PubMed]
  16. G. T. Kanellos, G. Papaioannou, D. Tsiokos, C. Mitrogiannis, G. Nianios, and N. Pleros, “Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications,” Opt. Express 18(1), 179–186 (2010). [CrossRef] [PubMed]
  17. D. Lin, X. Jiang, F. Xie, W. Zhang, Z. Lin, and I. Bennion, “High stability multiplexed fiber interferometer and its application on absolute displacement measurement and on-line surface metrology,” Opt. Express 12(23), 5729–5734 (2004). [CrossRef] [PubMed]
  18. J. Zhou, X, Dong, and Z, Shi, “Theoretical and experimental investigation of bending sensitivity of the D-shaped fiber Bragg gratings,” Chin. Acta Photon. Sin. 35(11), 1734–1737 (2006).
  19. C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008). [CrossRef]
  20. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlac, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997). [CrossRef]
  21. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings using fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase mask,” Apply Phys. Lett. 62(10), 1035–1037 (1993). [CrossRef]
  22. Z. Chen, and L. Liu, “Wavelength tuning of fiber Bragg grating based on fiber side polishing,” Proc. SPIE 7157, 71570J1–6 (2009)
  23. P. Jiang, Z. Chen, Y. Zeng, L. Liu, and F. Li, “Optical propagation characteristics of side-polished fibers,” Semicond. Optoelectron. 27(10), 578–581 (2006).
  24. L. Borgese, P. Zanola, E. Bontempi, D. Rossi, and L. E. Depero, “In situ XRD characterization of hydrogen desorption from electrochemically deposited Pd coating,” J. Coat. Technol. Res. 7(6), 691–695 (2010). [CrossRef]
  25. T. Nishide and F. Mizukami, “Crystal structures and optical properties of tungsten oxide films prepared by a complexing-agent-assisted sol-gel process,” Thin Solid Films 259(2), 212–217 (1995). [CrossRef]
  26. T. Nishide and F. Mizukami, “Refractive indices of the tungsten oxide films prepared by sol-gel and sputtering processes,” Opt. Eng. 34(11), 3329–3333 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited