OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6149–6154

Self-collimation and focusing effects in zero-average index metamaterials

Rémi Pollès, Emmanuel Centeno, Julien Arlandis, and Antoine Moreau  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6149-6154 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (864 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One dimensional photonic crystals combining positive and negative index layers have shown to present a photonic band gap insensitive to the period scaling when the volume average index vanishes. Defect modes lying in this zero- gap can in addition be obtained without locally breaking the symmetry of the crystal lattice. In this work, index dispersion is shown to broaden the resonant frequencies creating then a conduction band lying inside the zero- gap. Self-collimation and focusing effects are in addition demonstrated in zero-average index metamaterials supporting defect modes. This beam shaping is explained in the framework of a beam propagation model by introducing an harmonic average index parameter.

© 2011 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(160.5293) Materials : Photonic bandgap materials

ToC Category:

Original Manuscript: January 21, 2011
Revised Manuscript: February 22, 2011
Manuscript Accepted: February 22, 2011
Published: March 17, 2011

Rémi Pollès, Emmanuel Centeno, Julien Arlandis, and Antoine Moreau, "Self-collimation and focusing effects in zero-average index metamaterials," Opt. Express 19, 6149-6154 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Joannopoulos, S. Johnson, D. Winn, and R. Meade, Photonic crystals: molding the flow of light, 2nd edition, (Princeton University Press 2008).
  2. I. Nefedov, and S. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 036611 (2002). [CrossRef]
  3. J. Li, L. Zhou, C. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 83901 (2003). [CrossRef]
  4. D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. Vigneron, E. E. Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 066613 (2004). [CrossRef]
  5. Y. Yuan, L. Ran, J. Huangfu, H. Chen, L. Shen, and J. Kong, “Experimental verification of zero order bandgap in a layered stack of left-handed and right-handed materials,” Opt. Express 14, 2220–2227 (2006). [CrossRef] [PubMed]
  6. S. Kocaman, R. Chatterjee, N. Panoiu, J. Mcmillan, M. Yu, R. Osgood, D. Kwong, and C. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009). [CrossRef] [PubMed]
  7. V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009). [CrossRef] [PubMed]
  8. N. Panoiu, J. Osgood, S. Zhang, and S. Brueck, “Zero-n bandgap in photonic crystal superlattices,” J. Opt. Soc. Am. B 23, 506–513 (2006). [CrossRef]
  9. I. Shadrivov, A. Sukhorukov, and Y. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820–3822 (2009). [CrossRef]
  10. F. Krayzel, R. Poll`es, A. Moreau, and M. Mihailovic, “Simulation and analysis of exotic non-specular phenomena,” J. Europ. Opt. Soc.: Rap. Pub. 5, 10025 (2010). [CrossRef]
  11. E. Silvestre, R. Depine, M. Mart’ınez-Ricci, and J. Monsoriu, “Role of dispersion on zero-average-index bandgaps,” J. Opt. Soc. Am. B 26, 581–586 (2009). [CrossRef]
  12. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  13. Throughout this paper, the inverse Fourier Transform is defined by TF−1(f (α)) = R ∞ −∞ f (x)exp(iαx)dα.
  14. M. Born, E. Wolf, and A. B. Bhatia, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (Cambridge University press, Cambridge 2000). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited