OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6164–6176

Thermal effects in narrow linewidth single and two tone fiber lasers

Leanne J. Henry, Thomas M. Shay, Dane W. Hult, and Ken B. Rowland, Jr  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6164-6176 (2011)
http://dx.doi.org/10.1364/OE.19.006164


View Full Text Article

Enhanced HTML    Acrobat PDF (1455 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Significant effects from heating occur in both single and two tone fiber amplifiers. Single tone 1064 nm amplifiers have highest efficiency when the external environment surrounding the gain fiber is cold while 1064 nm two tone amplifiers co-seeded with broadband 1040 nm have maximum efficiency when the gain fiber is hot. It is shown experimentally that changes in the temperature of the core of the gain fiber have dramatic effects on the 1064 nm / 1040 nm power distribution in the output of two tone amplifiers. This has been attributed to temperature dependence of the absorption and emission cross-sections at the wavelengths of interest.

© 2011 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2400) Fiber optics and optical communications : Fiber properties
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3510) Lasers and laser optics : Lasers, fiber
(140.6810) Lasers and laser optics : Thermal effects
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 4, 2011
Revised Manuscript: February 24, 2011
Manuscript Accepted: February 25, 2011
Published: March 17, 2011

Citation
Leanne J. Henry, Thomas M. Shay, Dane W. Hult, and Ken B. Rowland, "Thermal effects in narrow linewidth single and two tone fiber lasers," Opt. Express 19, 6164-6176 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6164


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Koplow, D. A. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000). [CrossRef]
  2. D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications”, Proc. SPIE 6453, 64531F–1 to 64531F–7 (2007).
  3. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007). [CrossRef]
  4. A. Wada, T. Nozawa, D. Tanaka, and R. Yamauchi, “Suppression of SBS by intentionally induced periodic residual-strain in single-mode optical fibers”, in Proceedings of the 17th ECOC, 25–28, (1991).
  5. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007). [CrossRef] [PubMed]
  6. M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber”, Proc. SPIE 6873, 68730N–1 to 68730N–7 (2008).
  7. B. Shiner, “Recent technical and marketing developments in high power fiber lasers”, in Tech. Focus: Fiber Lasers and Amplifiers: Concepts to Applications, CLEO Europe, Munich, Germany, 2009.
  8. T. Bronder, I. Dajani, C. Zeringue, and T. Shay, “Multi-tone driven high-power narrow linewidth rare earth doped fiber amplifier”, US Patent 7764720, issued July 27, 2010.
  9. I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008). [CrossRef] [PubMed]
  10. I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009). [CrossRef]
  11. C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results”, Proc SPIE 7580, 75802L–1 to 75802L–8, (2010).
  12. L. J. Henry, T. M. Shay, D. W. Hult, and K. B. Rowland, “Enhancement of output power from narrow linewidth amplifiers via two-tone effect--high power experimental results,” Opt. Express 18(23), 23939–23947 (2010). [CrossRef] [PubMed]
  13. L. A. Vazquez-Zuniga, S. Chung, and Y. Jeong, “Thermal characteristics of an ytterbium-doped fiber amplifier operating at 1060 and 1080 nm,” Jpn. J. Appl. Phys. 49(2), 022502 (2010). [CrossRef]
  14. D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004). [CrossRef]
  15. N. A. Brilliant and K. Lagonik, “Thermal effects in a dual-clad ytterbium fiber laser,” Opt. Lett. 26(21), 1669–1671 (2001). [CrossRef]
  16. X. Peng and L. Dong, “Temperature dependence of ytterbium-doped fiber amplifiers,” J. Opt. Soc. Am. B 25(1), 126–130 (2008). [CrossRef]
  17. T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007). [CrossRef]
  18. A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007). [CrossRef]
  19. O.K. Alimov, T.T. Basiev, V.A. Konushkin, A.G. Papashvili, A.Ya. Karasik, and L.J. Henry, “Investigations of Yb-doped optical fiber using selective laser excitation, Laser Phys. Lett. (submitted to).
  20. K. Saito, R. Yamamoto, N. Kamiya, E. H. Sekiya, and P. Barua, “Fictive temperature dependence of optical properties in Yb-doped silica”, Proc SPIE 6998, 69981J–1 to 69981J–8, (2008).
  21. F. Patel, “Solid-state rare earth doped media for applications”, Ph.D. dissertation, University of California, Davis, California, 2000.
  22. V. Petit, T. Okazaki, E. H. Sekiya, R. Bacus, K. Saito, and A. J. Ikushima, “Characterization of Yb3+ clusters in silica glass preforms,” Opt. Mater. 31(2), 300–305 (2008). [CrossRef]
  23. Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses,” Mater. Chem. Phys. 107(2-3), 488–491 (2008). [CrossRef]
  24. P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences on Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354(42-44), 4760–4764 (2008). [CrossRef]
  25. K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys. 91(2), 576–581 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited