OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6182–6190

Crafting the core asymmetry to lift the degeneracy of optical vortices

Ashok Kumar, Pravin Vaity, and R. P. Singh  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6182-6190 (2011)
http://dx.doi.org/10.1364/OE.19.006182


View Full Text Article

Enhanced HTML    Acrobat PDF (1323 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce an asymmetry in the core of a high charge optical vortex by using an appropriate computer generated hologram. The splitting of a high charge optical vortex core into unit charge vortices has been found to depend on the extent of the asymmetry. For a second order vortex, the trajectories of the split unit charged vortices and their separation have been recorded as a function of change in the asymmetry of the core. We find a good agreement between the experimentally obtained and numerically calculated results.

© 2011 OSA

OCIS Codes
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: October 11, 2010
Revised Manuscript: February 18, 2011
Manuscript Accepted: February 21, 2011
Published: March 18, 2011

Citation
Ashok Kumar, Pravin Vaity, and R. P. Singh, "Crafting the core asymmetry to lift the degeneracy of optical vortices," Opt. Express 19, 6182-6190 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6182


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974). [CrossRef]
  2. V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).
  3. I. V. Basistiy, V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103(5-6), 422–428 (1993). [CrossRef]
  4. N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24(9), S951–S962 (1992). [CrossRef]
  5. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, 2001).
  6. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  7. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992). [CrossRef] [PubMed]
  8. R. P. Singh, A. Kumar, and J. Bhatt, “Vortices of light: Generation, characterization and applications,” in Progress in Nonlinear Optics Research, M. Takahashi and H. Gotô, eds. (Nova Science Pub, 2008).
  9. S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt. 46(15), 2893–2898 (2007). [CrossRef] [PubMed]
  10. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  11. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004). [CrossRef] [PubMed]
  12. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef] [PubMed]
  13. G. Foo, D. M. Palacios, and G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005). [CrossRef]
  14. D. Rozas, C. T. Law, and G. A. Swartzlander., “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14(11), 3054–3065 (1997). [CrossRef]
  15. G. Molina-Terriza, E. M. Wright, and L. Torner, “Propagation and control of noncanonical optical vortices,” Opt. Lett. 26(3), 163–165 (2001). [CrossRef]
  16. R. P. Singh and S. R. Chowdhury, “Trajectory of an optical vortex: Canonical vs. non-canonical,” Opt. Commun. 215(4-6), 231–237 (2003). [CrossRef]
  17. R. P. Singh and S. Roychowdhury, “Non-conservation of topological charge: Experiment with optical vortex,” J. Mod. Opt. 51, 177–181 (2004).
  18. F. S. Roux, “Coupling of noncanonical optical vortices,” J. Opt. Soc. Am. B 21(3), 664–670 (2004). [CrossRef]
  19. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Vortex evolution and bound pair formation in anisotropic nonlinear optical media,” Phys. Rev. Lett. 77(22), 4544–4547 (1996). [CrossRef] [PubMed]
  20. D. Jović, D. Arsenović, A. Strinić, M. Belić, and M. Petrović, “Counterpropagating optical vortices in photorefractive crystals,” Opt. Express 13(12), 4379–4389 (2005). [CrossRef] [PubMed]
  21. V. L. Ginzburg and L. P. Pitaevskii, “On the theory of superfluidity,” Sov. Phys. JETP 34, 858–863 (1958).
  22. X. Gan, P. Zhang, S. Liu, Y. Zheng, J. Zhao, and Z. Chen, “Stabilization and breakup of optical vortices in presence of hybrid nonlinearity,” Opt. Express 17(25), 23130–23136 (2009). [CrossRef]
  23. I. Freund, “Saddle point wave fields,” Opt. Commun. 163(4-6), 230–242 (1999). [CrossRef]
  24. I. Freund, “Optical vortex trajectories,” Opt. Commun. 181(1-3), 19–33 (2000). [CrossRef]
  25. F. S. Roux, “Optical vortex trajectories in anastigmatic and elliptical Gaussian beams,” S. Afr. J. Sci. 102, 601–605 (2006).
  26. R. Chakraborty and A. Ghosh, “Generation of an elliptic hollow beam using Mathieu and Bessel functions,” J. Opt. Soc. Am. A 23(9), 2278–2282 (2006). [CrossRef]
  27. I. Freund, “Critical point explosions in two-dimensional wave fields,” Opt. Commun. 159(1-3), 99–117 (1999). [CrossRef]
  28. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Decay of high order optical vortices in anisotropic nonlinear optical media,” Phys. Rev. Lett. 78(11), 2108–2111 (1997). [CrossRef]
  29. I. D. Maleev and G. A. Swartzlander., “Composite optical vortices,” J. Opt. Soc. Am. B 20(6), 1169–1176 (2003). [CrossRef]
  30. S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Öhberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15(14), 8619–8625 (2007). [CrossRef] [PubMed]
  31. M. V. Berry and M. R. Dennis, “Knotted and linked phase singularities in monochromatic waves,” Proc. R. Soc. Lond. A 457(2013), 2251–2263 (2001). [CrossRef]
  32. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” N. J. Phys. 7, 55.1–55.11 (2005). [CrossRef]
  33. M. R. Dennis, R. P. King, B. Jack, K. O'Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6(2), 118–121 (2010). [CrossRef]
  34. M. R. Dennis, “Rows of optical vortices from elliptically perturbing a high-order beam,” Opt. Lett. 31(9), 1325–1327 (2006). [CrossRef] [PubMed]
  35. V. V. Kotlyar, S. N. Khonina, A. A. Almazov, V. A. Soifer, K. Jefimovs, and J. Turunen, “Elliptic Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 23(1), 43–56 (2006). [CrossRef]
  36. S. Chávez-Cerda, J. C. Gutiérrez-Vega, and G. H. C. New, “Elliptic vortices of electromagnetic wave fields,” Opt. Lett. 26(22), 1803–1805 (2001). [CrossRef]
  37. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998). [CrossRef]
  38. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004), Chap. 4.
  39. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42(1), 217–223 (1995). [CrossRef]
  40. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003). [CrossRef] [PubMed]
  41. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993). [CrossRef]
  42. S. M. Baumann, D. M. Kalb, L. H. MacMillan, and E. J. Galvez, “Propagation dynamics of optical vortices due to Gouy phase,” Opt. Express 17(12), 9818–9827 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited