OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6253–6259

Mechanically-induced π-shifted long-period fiber gratings

Xiaojun Zhou, Shenghui Shi, Zhiyao Zhang, Jun Zou, and Yong Liu  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6253-6259 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1003 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A band-pass filter based on mechanically-induced multi-π-shifted long-period fiber gratings is proposed. The pass band width of the filter depends on the number N of the sub-gratings divided by π-shifts in the long-period fiber grating. The depth of the two lateral rejection bands can be changed by the amount of pressure applied to the fiber. This paper demonstrates a multi-π-shifted long-period fiber grating created by pressing a fiber between two periodically grooved plates. For N = 7 and LP12 mode coupling, the extinction ratio is 22.22 dB, and the pass band loss is 0.85 dB. For LP12 mode coupling, the pass band width varies from 14.23 nm to 39.31 nm when N increases from 2 to 10.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2340) Fiber optics and optical communications : Fiber optics components

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 4, 2011
Revised Manuscript: February 24, 2011
Manuscript Accepted: February 24, 2011
Published: March 18, 2011

Xiaojun Zhou, Shenghui Shi, Zhiyao Zhang, Jun Zou, and Yong Liu, "Mechanically-induced π-shifted long-period fiber gratings," Opt. Express 19, 6253-6259 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996). [CrossRef]
  2. J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters,” IEEE Photon. Technol. Lett. 15(3), 407–409 (2003). [CrossRef]
  3. S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27(9), 698–700 (2002). [CrossRef]
  4. J. R. Qian and H. F. Chen, “Gain flattening fibre filters using phase-shifted long period fiber gratings,” Electron. Lett. 34(11), 1132–1133 (1998). [CrossRef]
  5. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4(11), 457–466 (1999). [CrossRef] [PubMed]
  6. O. Deparis, R. Kiyan, O. Pottiez, M. Blondel, I. G. Korolev, S. A. Vasiliev, and E. M. Dianov, “Bandpass filters based on π-shifted long-period fiber gratings for actively mode-locked erbium fiber lasers,” Opt. Lett. 26(16), 1239–1241 (2001). [CrossRef]
  7. M. Kulishov, D. Krcmarík, and R. Slavík, “Design of terahertz-bandwidth arbitrary-order temporal differentiators based on long-period fiber gratings,” Opt. Lett. 32(20), 2978–2980 (2007). [CrossRef] [PubMed]
  8. R. Falate, O. Frazão, G. Rego, J. L. Fabris, and J. L. Santos, “Refractometric sensor based on a phase-shifted long-period fiber grating,” Appl. Opt. 45(21), 5066–5072 (2006). [CrossRef] [PubMed]
  9. Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett. 21(10), 657–659 (2009). [CrossRef]
  10. G. Humbert and A. Malki, “High performance bandpass filters based on electric arc-induced π-shifted long-period fiber gratings,” Electron. Lett. 39(21), 1506–1507 (2003). [CrossRef]
  11. M. Kulishov and X. Daxhelet, “Reconfigurable π-shifted and Mach–Zehnder bandpass filters on the basis of electrooptically induced long-period gratings in a planar waveguide,” J. Lightwave Technol. 21(3), 854–861 (2003). [CrossRef]
  12. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25(10), 710–712 (2000). [CrossRef]
  13. H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phase-shifted long-period fiber gratings,” IEEE Photon. Technol. Lett. 10(11), 1596–1598 (2009). [CrossRef]
  14. F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005). [CrossRef]
  15. L. R. Chen, “Design of flat top bandpass filters based on symmetric multiple phaseshifted long-period fiber gratings,” Opt. Commun. 205, 271–276 (2002).
  16. J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, “Analysis of intermodal coupling in a two-mode fiber with periodic microbends,” Opt. Lett. 12(4), 281–283 (1987). [CrossRef] [PubMed]
  17. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66(3), 216–220 (1976). [CrossRef]
  18. X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss becomes a gain,” Opt. Lett. 28(9), 686–688 (2003). [CrossRef] [PubMed]
  19. M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, “Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004). [CrossRef]
  20. J. Y. Cho and K. S. Lee, “A birefringence compensation method for mechanically induced long-period fiber gratings,” Opt. Commun. 213(4-6), 281–284 (2002). [CrossRef]
  21. S. Ramachandran, S. Golowich, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, and P. Wisk, “Lifting polarization degeneracy of modes by fiber design: a platform for polarization-insensitive microbend fiber gratings,” Opt. Lett. 30(21), 2864–2866 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited