OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6296–6302

Broadband degenerate OPO for mid-infrared frequency comb generation

Nick Leindecker, Alireza Marandi, Robert L. Byer, and Konstantin L. Vodopyanov  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6296-6302 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (910 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new technique suitable for generating broadband phase- and frequency-locked frequency combs in the mid-infrared. Our source is based on a degenerate optical parametric oscillator (OPO) which rigorously both down-converts and augments the spectrum of a pump frequency comb provided by a commercial mode-locked near-IR laser. Low intracavity dispersion, combined with extensive cross-mixing of comb components, results in extremely broad instantaneous mid-IR bandwidths. We achieve an output power of 60 mW and 20dB bandwidth extending from 2500 to 3800 nm. Among other applications, such a source is well-suited for coherent Fourier-transform spectroscopy in the absorption-rich mid-IR ‘molecular fingerprint’ region.

© 2011 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Nonlinear Optics

Original Manuscript: January 26, 2011
Revised Manuscript: February 25, 2011
Manuscript Accepted: February 25, 2011
Published: March 18, 2011

Nick Leindecker, Alireza Marandi, Robert L. Byer, and Konstantin L. Vodopyanov, "Broadband degenerate OPO for mid-infrared frequency comb generation," Opt. Express 19, 6296-6302 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004). [CrossRef] [PubMed]
  2. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010). [CrossRef] [PubMed]
  3. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007). [CrossRef]
  4. C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).
  5. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 mum region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15(25), 16540–16545 (2007). [CrossRef] [PubMed]
  6. C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006). [CrossRef]
  7. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-photon-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32(17), 2478–2480 (2007). [CrossRef] [PubMed]
  8. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 um,” J. Opt. Soc. Am. B 17(12), 2086–2094 (2000). [CrossRef]
  9. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4. 8um from a compact fiber source,” Opt. Lett. 32(9), 1138–1140 (2007). [CrossRef] [PubMed]
  10. A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett. 33(22), 2671–2673 (2008). [CrossRef] [PubMed]
  11. J. H. Sun, B. J. S. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4-2. 4um from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32(11), 1414–1416 (2007). [CrossRef] [PubMed]
  12. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009). [CrossRef] [PubMed]
  13. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. De Silvestri, and G. Cerullo, “Generation of broadband mid-infrared pulses from an optical parametric amplifier,” Opt. Express 15(23), 15035–15040 (2007). [CrossRef] [PubMed]
  14. J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. 7(6), 230–235 (1971). [CrossRef]
  15. C. D. Nabors, S. T. Yang, T. Day, and R. L. Byer, “Coherence properties of a doubly-resonant monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 7(5), 815–820 (1990). [CrossRef]
  16. S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008). [CrossRef] [PubMed]
  17. S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010). [CrossRef]
  18. K. L. Vodopyanov, N. C. Leindecker, R. L. Byer, and V. Pervak, “More Than 1000-nm-wide Mid-IR Frequency Comb Based on Divide-by-2 Optical Parametric Oscillator”, CLEO/QELS 2010 Conference, Opt. Soc. Amer., paper CThH5 (2010).
  19. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York 1988).
  20. A. Marandi, N. Leindecker, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a mid-infrared frequency comb produced by a degenerate optical parametric oscillator,” CLEO/QELS 2011 Conference, Opt. Soc. Amer., paper QtuF2 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 3 Fig. 2
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited