OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6303–6311

The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications

Yanlin Huang, Yosuke Nakai, Taiju Tsuboi, and Hyo Jin Seo  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6303-6311 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The novel red-emitting phosphors of Eu3+-activated Ca2RF4PO4:Eu3+ (R=Gd, Y) prepared by a solid-state reaction have been evaluated as a candidate for white solid state lighting. The detailed luminescence properties, e.g., the excitation spectra, the luminescence spectra and quantum efficiency under the excitation of near-UV, and decay lifetimes were reported. The phosphors can be efficiently excited by near UV light and exhibit a dominant emission peaked at 611 nm (5D07F2) with CIE coordinates of (x=0.661, y=0.333). The thermal stabilities were investigated from the luminescence intensities, color purity and the decay curves by increasing temperature. The luminescence parameters related to white LEDs applications were compared to some red phosphors and discussed in details. The red-emitting Ca2RF4PO4:Eu3+ (R=Gd, Y) may be potentially useful in the fabrication of white LEDs.

© 2011 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:

Original Manuscript: January 31, 2011
Revised Manuscript: March 5, 2011
Manuscript Accepted: March 6, 2011
Published: March 18, 2011

Yanlin Huang, Yosuke Nakai, Taiju Tsuboi, and Hyo Jin Seo, "The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications," Opt. Express 19, 6303-6311 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005). [CrossRef] [PubMed]
  2. S. Nakamura, and G. Fasol, The blue laser diode: GaN based blue light emitters and lasers (Springer-Verlag, Berlin, 1997), pp.126–223.
  3. M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003). [CrossRef]
  4. C. Ronda, Luminescence-from theory to applications (Wiley-VCH, 2007), pp. 77–289.
  5. S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1–3), 2–6 (2004). [CrossRef]
  6. R. J. Xie, N. Hirosaki, N. Kiumra, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007). [CrossRef]
  7. Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. Delsing, F. Disalvo, G. Dewith, and H. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca,Sr,Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1–2), 273–279 (2006). [CrossRef]
  8. V. R. Bandi, Y. T. Nien, T. H. Lu, and I. G. Chen, “Effect of calcination temperature and concentration on luminescence properties of novel Ca3Y2Si3O12:Eu phosphors,” J. Am. Ceram. Soc. 92(12), 2953–2956 (2009). [CrossRef]
  9. W. R. Liu, C. C. Lin, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and R. S. Liu, “ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor,” Opt. Express 18(3), 2946–2951 (2010). [CrossRef] [PubMed]
  10. T. W. Kuo, W. R. Liu, and T. M. Chen, “Emission color variation of (Ba,Sr)3BP3O12:Eu2+ phosphors for white light LEDs,” Opt. Express 18(3), 1888–1897 (2010). [CrossRef] [PubMed]
  11. C. H. Huang and T. M. Chen, “Ca9La(PO4)7:Eu2+,Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes,” Opt. Express 18(5), 5089–5099 (2010). [CrossRef] [PubMed]
  12. S.-F. Wang, K. Koteswara Rao, Y.-R. Wang, Y.-F. Hsu, S.-H. Chen, and Y.-C. Lu, “Structural characterization and luminescent properties of a red phosphor series: Y2-xEux(MoO4)3 (x=50.4–2.0),” J. Am. Ceram. Soc. 92(8), 1732–1738 (2009). [CrossRef]
  13. C. A. Kodaira, H. F. Brito, and M. Felinto, “Luminescence investigation of Eu3+ ion in the RE2(WO4)3 Matrix (RE=La and Gd) produced using the pechini method,” J. Solid State Chem. 171(1–2), 401–407 (2003). [CrossRef]
  14. T. W. Kuo, C. H. Huang, and T. M. Chen, “Novel yellowish-orange Sr8Al12O24S2:Eu2+ phosphor for application in blue light-emitting diode based white LED,” Opt. Express 18(S2), A231–A236 (2010). [CrossRef] [PubMed]
  15. L. Wang, X. Zhang, Z. Hao, Y. Luo, X. J. Wang, and J. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs,” Opt. Express 18(24), 25177–25182 (2010). [CrossRef] [PubMed]
  16. T. W. Kuo, W. R. Liu, and T. M. Chen, “High color rendering white light-emitting-diode illuminator using the red-emitting Eu2+-activated CaZnOS phosphors excited by blue LED,” Opt. Express 18(8), 8187–8192 (2010). [CrossRef] [PubMed]
  17. Z. F. Tian, H. B. Liang, H. H. Lin, Q. Su, B. Guo, G. B. Zhang, and Y. B. Fu, “Luminescence of NaGdFPO4:Ln3+ after VUV excitation: a comparison with GdPO4:Ln3+ (Ln= Ce, Tb),” J. Solid State Chem. 179(5), 1356–1362 (2006). [CrossRef]
  18. Z. Tian, H. Liang, W. Chen, Q. Su, G. Zhang, and G. Yang, “Efficient emission-tunable VUV phosphors Na2GdF2PO4:Tb3+.,” Opt. Express 17(2), 956–962 (2009). [CrossRef] [PubMed]
  19. F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008). [CrossRef]
  20. R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs—A review,” Sci. Technol. Adv. Mater. 8(7–8), 588–600 (2007). [CrossRef]
  21. J. Silver, and R. Withnall, “Color Conversion Phosphors for LEDS,” Chapter 3, in Luminescent Materials and Applications, A. Kitai, ed, (John Wiley & Sons, Adrian, 2008).
  22. K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln = Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996). [CrossRef]
  23. J. W. P. J. Verstegen, D. Radielovic, and L. E. Vrenken, “A new generation of ‘Deluxe’ fluorescent lamps, combining an efficacy of 80 lumens/W or more with a color rendering index of approximately 85,” J. Electrochem. Soc. 121(12), 1627–1631 (1974). [CrossRef]
  24. P. C. de Sousa Filho and O. A. Serra, “Tripolyphosphate as precursor for REPO(4):Eu (3+) (RE = Y, La, Gd) by a polymeric method,” J. Fluoresc. 18(2), 329–337 (2008). [CrossRef]
  25. M. Tanaka, Y. Miyako, K. Nishigaki, A. Kurita, and H. Hanzawa, “Effects of ZnO addition on doping of Eu3+ ions into Y2O3,” Electrochem. Solid-State Lett. 11(7), J61–J63 (2008). [CrossRef]
  26. M. Tukia, J. Hölsä, M. Lastusaari, and J. Niittykoski, “Eu3+ doped rare earth orthoborates, RBO3 (R=Y, La and Gd), obtained by combustion synthesis,” Opt. Mater. 27(9), 1516–1522 (2005). [CrossRef]
  27. G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008). [CrossRef]
  28. D. van der Voort and G. Blasse, “Luminescence of CaSO4:Bi3+, a small-offset case,” J. Solid State Chem. 99(2), 404–408 (1992). [CrossRef]
  29. D. Van der Voort and G. Blasse, “Luminescence of the europium (3+) ion in zirconium (4+) compounds,” Chem. Mater. 3(6), 1041–1045 (1991). [CrossRef]
  30. C. H. Huang, T. W. Kuo, and T. M. Chen, “Thermally stable green Ba(3)Y(PO(4))3:Ce(3+),Tb(3+) and red Ca(3)Y(AlO)(3)(BO(3))4:Eu(3+) phosphors for white-light fluorescent lamps,” Opt. Express 19(S1Suppl 1), A1–A6 (2011). [CrossRef] [PubMed]
  31. Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49(14), 6706–6715 (2010). [CrossRef] [PubMed]
  32. C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y,Gd)(V,P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007). [CrossRef]
  33. Q. Xia, M. Batentschuk, A. Osvet, A. Winnacker, and J. Schneider, “Quantum Yield of Eu2+ Emission in (Ca1−xSrx)S:Eu Light Emitting Diode Converter at 20-420 K,” Radiat. Meas. 45(3–6), 350–352 (2010). [CrossRef]
  34. K. Inoue, N. Hirosaki, R. J. Xie, and T. Takeda, “Highly efficient and thermally stable blue-emitting AlN: Eu2+ phosphor for ultraviolet white light-emitting diodes,” J. Phys. Chem. C 113(21), 9392–9397 (2009). [CrossRef]
  35. N. Hirosaki, R. J. Xie, K. Kimoto, T.i Sekiguchi, Y. Yamamoto,, T . Suehiro, and M . Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett. 86, 211905 (2005). [CrossRef]
  36. A. L. N. Stevels, “Effect of non-stoichiometry on the luminescence of Eu2+-doped aluminates with the β-alumina-type crystal structure,” J. Lumin. 17(1), 121–133 (1978). [CrossRef]
  37. L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin. 115(3-4), 77–90 (2005). [CrossRef]
  38. K. Toda, Y. Kameo, M. Ohta, and M. Sato, “Luminescence properties of layered perovskites activated by Eu3+ ions,” J. Alloy. Comp. 218(2), 228–232 (1995). [CrossRef]
  39. U. Rambabu and S. Buddhudu, “Optical properties of LnPO4:Eu3+ (Ln=Y, La and Gd) powder phosphors,” Opt. Mater. 17(3), 401–408 (2001). [CrossRef]
  40. L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Mater. 3(3), 2172–2195 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited