OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6366–6376

Compensation of thermally induced depolarization in Faraday isolators for high average power lasers

Ilya Snetkov, Ivan Mukhin, Oleg Palashov, and Efim Khazanov  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6366-6376 (2011)
http://dx.doi.org/10.1364/OE.19.006366


View Full Text Article

Enhanced HTML    Acrobat PDF (1224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compensation scheme for thermally induced birefringence in Faraday isolators is proposed. With the use of this scheme a 36-fold increase of the isolation degree was attained in experiment. A comparative analysis of the considered scheme and the earlier Faraday isolator schemes with high average radiation power is performed. A method for optimizing the earlier Faraday isolator scheme with birefringence compensation is developed.

© 2011 OSA

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(230.2240) Optical devices : Faraday effect
(260.1440) Physical optics : Birefringence

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 10, 2011
Revised Manuscript: March 4, 2011
Manuscript Accepted: March 6, 2011
Published: March 21, 2011

Citation
Ilya Snetkov, Ivan Mukhin, Oleg Palashov, and Efim Khazanov, "Compensation of thermally induced depolarization in Faraday isolators for high average power lasers," Opt. Express 19, 6366-6376 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6366


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002). [CrossRef]
  2. E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004). [CrossRef]
  3. I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 tesla permanent -magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282(10), 1969–1972 (2009). [CrossRef]
  4. T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992).
  5. N. P. Barnes and L. P. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992). [CrossRef]
  6. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007). [CrossRef] [PubMed]
  7. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999). [CrossRef]
  8. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006). [CrossRef]
  9. D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010). [CrossRef]
  10. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999). [CrossRef]
  11. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17(1), 99–102 (2000). [CrossRef]
  12. N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000). [CrossRef]
  13. A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37(5), 471–474 (2007). [CrossRef]
  14. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31(7), 488–503 (1941). [CrossRef]
  15. M. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969). [CrossRef]
  16. J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1964).
  17. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002). [CrossRef] [PubMed]
  18. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Novel magnetooptical mediums for cryogenic Faraday isolator,” in ICONO/LAT 2010 (2010), LTuL23.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited