OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6439–6449

High resolution characterization of modifications in fused silica after exposure to low fluence 355 nm laser at different repetition frequencies

C. H. Li, X. Ju, X. D. Jiang, J. Huang, X. D. Zhou, Z. Zheng, W. D. Wu, W. G. Zheng, Z. X. Li, B. Y. Wang, and X. H. Yu  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6439-6449 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1237 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the characterization of modifications in fused silica after exposure to low fluence (2 J/cm2) 355 nm laser at repetition frequencies of 1 Hz, 5 Hz and 10 Hz. Synchrotron based XRF spectroscopy is employed to study concentration variation of metal inclusions in the surface layer. Positron annihilation lifetime spectroscopy is used to probe atomic size defects variation in bulk silica. FT-IR is used to characterize changes of bond length and angle of Si-O-Si covalent bond of irradiated silica. Compared to the basic frequency, the big loss of cerium and iron concentration, the size enlargement of vacancy cluster and the decrease of Si-O-Si covalent bond length after 10 Hz laser irradiation are illustrated by our data. These tiny modifications provide important data to investigate laser damage mechanism.

© 2011 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.6030) Materials : Silica

ToC Category:

Original Manuscript: October 28, 2010
Revised Manuscript: December 15, 2010
Manuscript Accepted: January 5, 2011
Published: March 22, 2011

C. H. Li, X. Ju, X. D. Jiang, J. Huang, X. D. Zhou, Z. Zheng, W. D. Wu, W. G. Zheng, Z. X. Li, B. Y. Wang, and X. H. Yu, "High resolution characterization of modifications in fused silica after exposure to low fluence 355 nm laser at different repetition frequencies," Opt. Express 19, 6439-6449 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Seife and D. Malakoff, “PHYSICS: Will Livermore Laser Ever Burn Brightly?” Science 289(5482), 1126–1129 (2000). [CrossRef]
  2. M. L. Andre, “Status of the LMJ project,” Proc. SPIE 3047, 38-42 (1996).
  3. W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).
  4. R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10642–10649 (2010). [CrossRef] [PubMed]
  5. A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Génin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2(12), 796–800 (2003). [CrossRef] [PubMed]
  6. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006). [CrossRef]
  7. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010). [CrossRef] [PubMed]
  8. R. A. Negres, M. W. Burke, S. B. Sutton, P. DeMange, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007). [CrossRef]
  9. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007). [CrossRef]
  10. K. Awazu and H. Kawazoe, “Strained Si–O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses,” J. Appl. Phys. 94(10), 6243–6262 (2003). [CrossRef]
  11. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005). [CrossRef] [PubMed]
  12. C. H. Li, X. Ju, W. D. Wu, X. D. Jiang, J. Huang, W. G. Zheng, and X. H. Yu, “Synchrotron micro-XRF study of metal inclusions distribution and variation in fused silica induced by ultraviolet laser pulses,” Nucl. Instrum Meth. B 268(9), 1502–1507 (2010). [CrossRef]
  13. M. F. Guerra, M. Radtke, I. Reiche, H. Riesemeier, and E. Strub, “Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline,” Nucl. Instrum Meth. B 266(10), 2334–2338 (2008). [CrossRef]
  14. L. Vincze, B. Vekemans, F. E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, and F. Adams, “Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging,” Anal. Chem. 76(22), 6786–6791 (2004). [CrossRef] [PubMed]
  15. S. Ghosh, P. M. G. Nambissan, and R. Bhattacharya, “Positron annihilation and Mössbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystalline MgMn0.1Fe1.9−xInxO4,” Phys. Lett. A 325(3-4), 301–308 (2004). [CrossRef]
  16. M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998). [CrossRef]
  17. H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vaccum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001). [CrossRef] [PubMed]
  18. J. C. Conde, F. Lusquinos, P. Gonzalez, B. Leon, and M. Perez-Amor, “Temperature distribution in a material heated by laser radiation: modeling and application,” Vacuum 64(3-4), 359–366 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited