OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6450–6461

Energy transport in metal nanoparticle chains via sub-radiant plasmon modes

Britain Willingham and Stephan Link  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6450-6461 (2011)
http://dx.doi.org/10.1364/OE.19.006450


View Full Text Article

Enhanced HTML    Acrobat PDF (1429 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the propagation of surface plasmon polaritons through coupling of light to sub-radiant dipole modes in finite chains of Ag nanoparticles. End excitation of collections of closely spaced particles reveals a band of sub-radiant modes whereby the decay of surface plasmon polaritons due to radiative losses is minimized. We show that excitation of any of these sub-radiant modes results in the most efficient energy transfer throughout the optical spectrum, with smaller interparticle separations resulting in the longest propagation.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(260.3910) Physical optics : Metal optics
(350.3950) Other areas of optics : Micro-optics
(350.4990) Other areas of optics : Particles
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 1, 2010
Revised Manuscript: February 28, 2011
Manuscript Accepted: March 14, 2011
Published: March 22, 2011

Citation
Britain Willingham and Stephan Link, "Energy transport in metal nanoparticle chains via sub-radiant plasmon modes," Opt. Express 19, 6450-6461 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6450


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998). [CrossRef]
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  3. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000). [CrossRef]
  4. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008). [CrossRef]
  5. A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Lett. 8(8), 2369–2372 (2008). [CrossRef] [PubMed]
  6. M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6(4), 715–719 (2006). [CrossRef] [PubMed]
  7. C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7(2), 318–322 (2007). [CrossRef] [PubMed]
  8. A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008). [CrossRef]
  9. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  10. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002). [CrossRef]
  11. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002). [CrossRef]
  12. M. D. Arnold, M. G. Blaber, M. J. Ford, and N. Harris, “Universal scaling of local plasmons in chains of metal spheres,” Opt. Express 18(7), 7528–7542 (2010). [CrossRef] [PubMed]
  13. P. Nordlander, “Plasmonics: Subwavelength imaging in colour,” Nat. Photonics 2(7), 387–388 (2008). [CrossRef]
  14. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005). [CrossRef] [PubMed]
  15. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett. 32(8), 973–975 (2007). [CrossRef] [PubMed]
  16. A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78(3), 035403 (2008). [CrossRef]
  17. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006). [CrossRef]
  18. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006). [CrossRef]
  19. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 066606 (2005). [CrossRef]
  20. D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4(9), 1561–1565 (2004). [CrossRef]
  21. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004). [CrossRef]
  22. S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69(12), 125418 (2004). [CrossRef]
  23. S. Zou and G. C. Schatz, “Metal nanoparticle array waveguides: proposed structures for subwavelength devices,” Phys. Rev. B 74(12), 125111 (2006). [CrossRef]
  24. V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007). [CrossRef]
  25. D. S. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Lett. 5(5), 985–989 (2005). [CrossRef] [PubMed]
  26. Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional au nanoparticle chains,” Nano Lett. 4(6), 1067–1071 (2004). [CrossRef]
  27. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express 15(26), 17482–17493 (2007). [CrossRef] [PubMed]
  28. A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B 76(20), 201403 (2007). [CrossRef]
  29. R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(8), 085407 (2004). [CrossRef]
  30. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001). [CrossRef] [PubMed]
  31. J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010). [CrossRef]
  32. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009). [CrossRef] [PubMed]
  33. J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. II. optical properties of aggregated metal spheres,” Phys. Rev. B 25(6), 4204–4229 (1982). [CrossRef]
  34. B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93(1), 209–216 (2008). [CrossRef]
  35. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009). [CrossRef] [PubMed]
  36. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8(11), 581–583 (1983). [CrossRef] [PubMed]
  37. R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11(4), 1732–1740 (1975). [CrossRef]
  38. R. Brako, “Optical properties of composite media,” J. Phys. C Solid State Phys. 11(15), 3345–3355 (1978). [CrossRef]
  39. J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley and Sons, 1975).
  40. D. J. Bergman, “Dielectric constant of a two-component granular composite: a practical scheme for calculating the pole spectrum,” Phys. Rev. B 19(4), 2359–2368 (1979). [CrossRef]
  41. F. Claro, “Theory of resonant modes in particulate matter,” Phys. Rev. B 30(9), 4989–4999 (1984). [CrossRef]
  42. K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71(11), 115409 (2005). [CrossRef]
  43. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003). [CrossRef]
  44. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005). [CrossRef] [PubMed]
  45. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000). [CrossRef]
  46. Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited