OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6514–6523

Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses

Bo Zhou, Hai Lin, Baojie Chen, and Edwin Yue-Bun Pun  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6514-6523 (2011)
http://dx.doi.org/10.1364/OE.19.006514


View Full Text Article

Enhanced HTML    Acrobat PDF (1446 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Superbroadband emission from 1.0 to 1.7 μm wavelength was observed in thulium-bismuth (Tm-Bi) codoped sodium-germanium-gallate (NGG) glasses under 793 nm excitation. Efficient energy transfer process from Bi to Tm ions, with value as high as 67.7%, was achieved which is beneficial in achieving flat broadband lineshape. The large stimulated emission cross-section and measured lifetime confirm the potentials of Tm-Bi codopants as luminescence sources for superbroadband near-infrared (NIR) optical amplifiers and tunable lasers. Planar optical waveguides were fabricated successfully in the codoped NGG glasses using K+-Na+ ion-exchange process.

© 2011 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(230.2285) Optical devices : Fiber devices and optical amplifiers

ToC Category:
Materials

History
Original Manuscript: January 26, 2011
Revised Manuscript: March 15, 2011
Manuscript Accepted: March 16, 2011
Published: March 22, 2011

Citation
Bo Zhou, Hai Lin, Baojie Chen, and Edwin Yue-Bun Pun, "Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses," Opt. Express 19, 6514-6523 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6514


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephens, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000). [CrossRef] [PubMed]
  2. S. Kasap, “Optoelectronics” in The Optics Encyclopedia, edited by T. Brown, K. Creath, H. Kogelnik, M. A. Kriss, J. Schmit, and M. J. Weber (Wiley-VCH, Weihein, Germany, 2004), Vol. 4. pp. 2237–2284.
  3. See, for example, Rare-Earth-Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, eds., (Marcel Dekker, 2001), and references therein.
  4. H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd 3+ and Pr 3+ in gallate glasses with low phonon energies,” Appl. Opt. 36(24), 5839–5843 (1997). [CrossRef] [PubMed]
  5. M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39(27), 4979–4984 (2000). [CrossRef]
  6. Y. S. Han, J. H. Song, and J. Heo, “Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass,” J. Appl. Phys. 94, 2817 (2003). [CrossRef]
  7. D. L. Yang, H. Lin, and E. Y. B. Pun, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–363 (2009). [CrossRef]
  8. B. Zhou, H. Lin, D. Yang, and E. Y. B. Pun, “Emission of 1.38 μm and gain properties from Ho3+-doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers,” Opt. Lett. 35(2), 211–213 (2010). [CrossRef] [PubMed]
  9. S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003). [CrossRef]
  10. L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er(3+)-Tm(3+) codoped tellurite fibre,” Opt. Express 12(11), 2429–2434 (2004). [CrossRef] [PubMed]
  11. Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005). [CrossRef]
  12. D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007). [CrossRef]
  13. Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009). [CrossRef]
  14. B. Zhou, H. Lin, and E. Y. B. Pun, “Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region,” Opt. Express 18(18), 18805–18810 (2010). [CrossRef] [PubMed]
  15. K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006). [CrossRef]
  16. S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002). [CrossRef]
  17. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999). [CrossRef]
  18. V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008). [CrossRef]
  19. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009). [CrossRef] [PubMed]
  20. J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009). [CrossRef] [PubMed]
  21. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009). [CrossRef]
  22. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, A. Jha, and S. Shen, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Opt. Express 14(22), 10452–10459 (2006). [CrossRef] [PubMed]
  23. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids (2010), doi:.
  24. D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95(15), 151106 (2009). [CrossRef]
  25. B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962). [CrossRef]
  26. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962). [CrossRef]
  27. B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009). [CrossRef]
  28. R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. J. M. Fernández-Navarro, and D. Muñoz-Martin, “Spectroscopic properties of the 1.4 μm emission of Tm3+ ions in TeO2-WO3-PbO glasses,” Opt. Express 16(16), 11836–11846 (2008). [CrossRef] [PubMed]
  29. J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002). [CrossRef]
  30. F. Lahoz, J. M. Almenara, U. R. Rodriguez-Mendoza, I. R. Martin, and V. Lavin, “Dopant portioning on the near-infrared emissions of Tm3+ in oxyfluoride glass ceramics,” J. Appl. Phys. 99(5), 053103 (2006). [CrossRef]
  31. Z. Xiao, R. Serna, F. Xu, and C. N. Afonso, “Critical separation for efficient Tm3+ -Tm3+ energy transfer evidenced in nanostructured Tm3+: Al2O3 thin films,” Opt. Lett. 33(6), 608–610 (2008). [CrossRef] [PubMed]
  32. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005). [CrossRef] [PubMed]
  33. T. H. Lee and J. Heo, “Energy transfer processes and Ho3+: 5I5 level population dynamics in chalcohalide glasses,” Phys. Rev. B 73(14), 144201 (2006). [CrossRef]
  34. H. Lin, X. Wang, L. Lin, C. Li, D. Yang, and S. Tanabe, “Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser,” J. Phys. D Appl. Phys. 40(12), 3567–3572 (2007). [CrossRef]
  35. R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006). [CrossRef]
  36. M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, and H. Sato, “Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal,” J. Opt. Soc. Am. B 24(12), 3023–3033 (2007). [CrossRef]
  37. Z. Xiao, R. Serna, and C. N. Alfonso, “Broadband emission in Er-Tm codoped Al2O3 films: The role of energy transfer from Er to Tm,” J. Appl. Phys. 101(3), 033112 (2007). [CrossRef]
  38. Z. Xiao, B. Zhou, L. Yan, F. Zhu, F. Zhang, and A. Huang, “Photoluminescence and energy transfer processes in rare earth ion doped oxide thin films with substrate heating,” Phys. Lett. A 374(10), 1297–1300 (2010). [CrossRef]
  39. J. Ruan, E. Wu, B. Wu, H. Zeng, Q. Zhang, G. Dong, Y. Qiao, D. Chen, and J. Qiu, “Spectral properties and broadband optical amplification of Yb-Bi codoped MgO-Al2O3-ZnO-SiO2 glasses,” J. Opt. Soc. Am. B 26(4), 778–782 (2009). [CrossRef]
  40. H. P. Xia and X. J. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89, 051917 (2006). [CrossRef]
  41. K. Liu and E. Y. B. Pun, “Buried ion-exchanged glass waveguides using field-assisted annealing,” IEEE Photon. Technol. Lett. 17(1), 76–78 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited