OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6524–6540

Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators

Lei Zhang, Ruiqiang Ji, Yonghui Tian, Lin Yang, Ping Zhou, Yangyang Lu, Weiwei Zhu, Yuliang Liu, Lianxi Jia, Qing Fang, and Mingbin Yu  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6524-6540 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1969 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the simultaneous implementation of the XOR and XNOR operations at two ports of a directed logic circuit based on two cascaded microring resonators (MRRs), which are both modulated through thermo-optic effect. Two electrical modulating signals applied to the MRRs represent the two operands of each logic operation. Simultaneous bitwise XOR and XNOR operations at 10 kbit/s are demonstrated in two different operating modes. We show that such a circuit can be readily realized using the plasma dispersion effect or the electric field effects, indicating its potential for high-speed operation. We further employ the scattering matrix method to analyze the spectral characteristics of the fabricated circuit, which can be regarded as a Mach-Zehnder interferometer (MZI) in whole. The two MRRs in the circuit act as wavelength-dependent splitting and combining units of the MZI. The degradation of the spectra observed in the experiment is found to be related to the length difference between the MZI’s two arms. The evolution of the spectra with this length difference is presented.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3750) Integrated optics : Optical logic devices
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

Original Manuscript: January 27, 2011
Manuscript Accepted: March 14, 2011
Published: March 22, 2011

Lei Zhang, Ruiqiang Ji, Yonghui Tian, Lin Yang, Ping Zhou, Yangyang Lu, Weiwei Zhu, Yuliang Liu, Lianxi Jia, Qing Fang, and Mingbin Yu, "Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators," Opt. Express 19, 6524-6540 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15(1), 150–165 (2007). [CrossRef] [PubMed]
  2. H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photonics Nanostruct. Fund. Appl. 5(1), 14–20 (2007). [CrossRef]
  3. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010). [CrossRef]
  4. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002). [CrossRef]
  5. X. Zhang, Y. Wang, J. Q. Sun, D. M. Liu, and D. X. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs,” Opt. Express 12(3), 361–366 (2004). [CrossRef] [PubMed]
  6. Q. F. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007). [CrossRef] [PubMed]
  7. M. P. Fok and P. R. Prucnal, “All-optical XOR gate with optical feedback using highly Ge-doped nonlinear fiber and a terahertz optical asymmetric demultiplexer,” Appl. Opt. 50(2), 237–241 (2011). [CrossRef] [PubMed]
  8. L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, and M. B. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010). [CrossRef] [PubMed]
  9. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004). [CrossRef]
  10. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]
  11. M. M. Geng, L. X. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. L. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009). [CrossRef] [PubMed]
  12. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  13. G. T. Reed and A. P. Knights, Silicon Photonics: an Introduction (Wiley, West Sussex, 2004), Chap. 4.
  14. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010). [CrossRef]
  15. Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007). [CrossRef] [PubMed]
  16. A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]
  17. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010). [CrossRef] [PubMed]
  18. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006). [CrossRef] [PubMed]
  19. J. Takayesu, M. Hochberg, T. Baehr-Jones, E. Chan, G. Wang, P. Sullivan, Y. Liao, J. Davies, L. Dalton, A. Scherer, and W. Krug, “A hybrid electrooptic microring resonator-based 1×4×1 ROADM for wafer scale optical interconnects,” J. Lightwave Technol. 27(4), 440–448 (2009). [CrossRef]
  20. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009). [CrossRef]
  21. J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]
  22. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000). [CrossRef]
  23. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002). [CrossRef]
  24. J. Heebner, R. Grover, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, London, 2008), Chap. 3.
  25. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: a Signal Processing Approach (Wiley, New York, 1999), Chap. 3.
  26. J. B. Feng, Q. Q. Li, and Z. P. Zhou, “Single ring interferometer configuration with doubled free-spectral range,” IEEE Photon. Technol. Lett. 23(2), 79–81 (2011). [CrossRef]
  27. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]
  28. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002). [CrossRef]
  29. M. E. Solmaz, Y. F. Zhou, and C. K. Madsen, “Modeling Asymmetric Resonances Using an Optical Filter Approach,” J. Lightwave Technol. 28(20), 2951–2955 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited