OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6563–6570

A 533-nm self-luminescent Si-rich SiNx/SiOx distributed Bragg reflector

Yung-Hsiang Lin, Chung-Lun Wu, Yi-Hao Pai, and Gong-Ru Lin  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6563-6570 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1324 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 24-pair Si-rich SiNx/SiOx-based distributed Bragg reflector (DBR) architecture, in situ doped with Si nanocrystals (Si-ncs), is studied to show self-photoluminescence (PL) with narrow-linewidth green-color emission pattern. By cascaded depositing, the broadband luminescent SiNx/SiOx pairs with SiNx and SiOx layer thickness of 45 and 86 nm and corresponding refractive indices of 1.96 and 1.62, respectively, and the transmitted PL linewidth of the in situ Si-nc-doped DBR emitter/filter centered at a wavelength of 533 nm greatly reduces from 150 to 10 nm, which is achieved by blocking the UV and blue luminescence at 400–510 nm with the DBR filter bandwidth up to 95 nm. A multilayer DBR modeling is established to simulate the transmitted PL from the summation of each emissive SiNx/SiOx pair, providing a coincident PL shape with a spectral linewidth of 15 nm.

© 2011 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(250.5230) Optoelectronics : Photoluminescence
(300.3700) Spectroscopy : Linewidth
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

Original Manuscript: November 10, 2010
Revised Manuscript: December 29, 2010
Manuscript Accepted: December 29, 2010
Published: March 23, 2011

Yung-Hsiang Lin, Chung-Lun Wu, Yi-Hao Pai, and Gong-Ru Lin, "A 533-nm self-luminescent Si-rich SiNx/SiOx distributed Bragg reflector," Opt. Express 19, 6563-6570 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. S. Iyer and Y.-H. Xie, “Light emission from silicon,” Science 260(5104), 40–46 (1993). [CrossRef] [PubMed]
  2. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000). [CrossRef] [PubMed]
  3. T. Creazzo, B. Redding, E. Marchena, R. Hao, J. Murakowski, S. Shi, and D. W. Prather, “Distributed Bragg reflector enhancement of electroluminescence from a silicon nanocrystal light emitting device,” Thin Solid Films 518(15), 4394–4398 (2010). [CrossRef]
  4. A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, “Electroluminescent device based on silicon nanopillars,” Appl. Phys. Lett. 69(15), 2267–2269 (1996). [CrossRef]
  5. G.-R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005). [CrossRef]
  6. F. Iacona, G. Franzo, E. C. Moreira, D. Pacifici, A. Irrera, and F. Priolo, “Luminescence properties of Si nanocrystals embedded in optical microcavities,” Mater. Sci. Eng. C 19(1-2), 377–381 (2002). [CrossRef]
  7. C. B. Li, Y. H. Zuo, B. W. Cheng, R. W. Mao, L. Zhao, W. H. Shi, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Thermally tunable optical filter with crystalline silicon as cavity,” Opt. Commun. 244(1-6), 167–170 (2005). [CrossRef]
  8. D. Amans, S. Callard, A. Gagnaire, J. Joseph, F. Huisken, and G. Ledoux, “Spectral and spatial narrowing of the emission of silicon nanocrystals in a microcavity,” J. Appl. Phys. 95(9), 5010–5013 (2004). [CrossRef]
  9. A. Muscara, M. Eloisacastagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006). [CrossRef]
  10. G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006). [CrossRef]
  11. G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007). [CrossRef]
  12. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999). [CrossRef]
  13. A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernández, G. Contreras-Puente, and J. C. Alonso, “ Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4 /NH 3, ” Nanotechnology 18(15), 155704 (2007). [CrossRef]
  14. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals- Molding the Flow of Light (Princeton University Press, 2008).
  15. A. L. Shabalov and M. S. Feldman, “Optical and dielectric properties of thin SiOx films of variable composition,” Thin Solid Films 110(3), 215–224 (1983). [CrossRef]
  16. J.-F. Lelievre, A. Kaminski, J.-P. Boyeaux, R. Monna, and M. Lemiti, “Optical properties of PECVD and UVCVD SiNx:H antireflection coatings for silicon solar cells,” IEEE Photovoltaic Specialists Conference, 2005.
  17. A. Belarouci and F. Gourbilleau, “Si/SiO2 superlattice based optical planar microcavity,” Appl. Phys. B 88(2), 237–240 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited