OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6599–6608

Influence of electron irradiation on optical properties of Bismuth doped silica fibers

Alexander V. Kir’yanov, Vladislav V. Dvoyrin, Valery M. Mashinsky, Nikolai N. Il’ichev, Nina S. Kozlova, and Evgueny M. Dianov  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6599-6608 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1000 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a study of the attenuation spectra transformations for a series of Bismuth (Bi) doped silica fibers with various contents of emission-active Bi centers, which arise as the result of irradiation by a beam of high-energy electrons. The experimental data reveal a substantial decrease of concentration of the Bi centers, associated with the presence of Germanium in silica glass, at increasing the irradiation dose (the resonant-absorption bleaching effect in germano-silicate fiber). In contrast, the spectral changes that appear in Bi doped alumino-silicate fiber have through irradiation a completely different character, viz., weak growth of the resonant-absorption peaks ascribed to the Bi centers, associated with the presence of Aluminum in silica glass. These results demonstrating high susceptibility of Bi centers to electron irradiation while opposite routes of the irradiation-induced spectral changes in Bi doped germanate and aluminate fibers seem to be of worth notice for understanding the nature of these centers.

© 2011 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(160.2540) Materials : Fluorescent and luminescent materials
(160.3380) Materials : Laser materials
(300.6250) Spectroscopy : Spectroscopy, condensed matter

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 29, 2010
Revised Manuscript: February 17, 2011
Manuscript Accepted: February 18, 2011
Published: March 23, 2011

Alexander V. Kir’yanov, Vladislav V. Dvoyrin, Valery M. Mashinsky, Nikolai N. Il’ichev, Nina S. Kozlova, and Evgueny M. Dianov, "Influence of electron irradiation on optical properties of Bismuth doped silica fibers," Opt. Express 19, 6599-6608 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004). [CrossRef] [PubMed]
  2. E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005). [CrossRef]
  3. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005). [CrossRef] [PubMed]
  4. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006). [CrossRef] [PubMed]
  5. E. M. Dianov, A. V. Shubin, M. A. Mel’kumov, O. I. Medvedkov, and I. A. Bufetov, “High-power CW bismuth-fiber lasers,” J. Opt. Soc. Am. B 24(8), 1749–1755 (2007). [CrossRef]
  6. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express 15(9), 5473–5476 (2007). [CrossRef] [PubMed]
  7. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007). [CrossRef]
  8. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 7(6), 487–504 (2009). [CrossRef]
  9. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from Bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001). [CrossRef]
  10. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005). [CrossRef] [PubMed]
  11. M. Yu. Sharonov, A. B. Bykov, and R. R. Alfano, “Excitation relaxation pathways in p-element (Bi, Pb, Sb and Sn)-doped germinate glasses,” J. Opt. Soc. Am. B 26(7), 1435–1441 (2009). [CrossRef]
  12. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009). [CrossRef] [PubMed]
  13. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33(13), 1488–1490 (2008). [CrossRef] [PubMed]
  14. E. F. Kustov, L. I. Bulatov, V. V. Dvoyrin, and V. M. Mashinsky, “Molecular orbital model of optical centers in bismuth-doped glasses,” Opt. Lett. 34(10), 1549–1551 (2009). [CrossRef] [PubMed]
  15. B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,” Appl. Phys. B 98(2-3), 455–458 (2010). [CrossRef]
  16. M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria-alumina-silica glass,” Opt. Mater. 32(2), 368–373 (2009). [CrossRef]
  17. E. F. Kustov, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Crystal field and molecular orbital theory of MBm centres in glasses,” J. Phys. At. Mol. Opt. Phys. 43(2), 025402 (2010). [CrossRef]
  18. Q. Yan-Qing and S. Yong-Hang, “Fluorescence emission centres and the corresponding infrared fluorescence saturation in a bismuth-doped silica fibre,” Chin. Phys. Lett. 25(7), 2527–2530 (2008). [CrossRef]
  19. V. V. Dvoyrin, A. V. Kir’yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, gain, and laser action in Bismuth-doped aluminosilicate optical fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010). [CrossRef]
  20. Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010). [CrossRef]
  21. M. Yu. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett. 33(18), 2131–2133 (2008). [CrossRef] [PubMed]
  22. E. M. Dianov, “On the nature of near-IR emitting Bi centers in glass,” Quantum Electron. 40(4), 283–285 (2010). [CrossRef]
  23. M. Peng, B. Sprenger, M. A. Schmidt, H. G. L. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010). [CrossRef] [PubMed]
  24. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009). [CrossRef]
  25. Y. Ou, S. Baccaro, Y. Zhang, Y. Yang, and G. Chen, “Effect of gamma-ray irradiation on the optical properties of PbO-B2O3-SiO2 and Bi2O3-B2O3-SiO2 glasses,” J. Am. Ceram. Soc. 93(2), 338–341 (2010). [CrossRef]
  26. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008). [CrossRef]
  27. I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. N. Abramov, A. N. Guryanov, and E. M. Dianov, “Luminescence and optical gain in Pb-doped silica-based optical fibers,” Opt. Express 17(16), 13487–13492 (2009). [CrossRef] [PubMed]
  28. Q. Wang, H. Geng, C. Sun, Z. Zhang, and S. He, “Evolution of defects in a multicomponent glass irradiated by 1 MeV electrons,” Nucl. Instrum. Methods Phys. Res. B 268(9), 1478–1481 (2010). [CrossRef]
  29. D. L. Griscom, M. E. Gingerich, and E. J. Friebele, “Radiation-induced defects in glasses: Origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71(7), 1019–1022 (1993). [CrossRef] [PubMed]
  30. K. Médjahdi, A. Boukenter, Y. Ouerdane, F. Messina, and M. Cannas, “Ultraviolet-induced paramagnetic centers and absorption changes in singlemode Ge-doped optical fibers,” Opt. Express 14(13), 5885–5894 (2006). [CrossRef] [PubMed]
  31. A. Alessi, S. Agnello, F. M. Gelardi, S. Grandi, A. Magistris, and R. Boscaino, “Twofold co-ordinated Ge defects induced by gamma-ray irradiation in Ge-doped SiO2.,” Opt. Express 16(7), 4895–4900 (2008). [CrossRef] [PubMed]
  32. S. Girard, Y. Ouerdane, G. Origlio, C. Marcandella, A. Boukenter, N. Richard, J. Baggio, P. Paillet, M. Cannas, J. Bisutti, J.-P. Meunier, and R. Boscaino, “Radiation effects on silica-based preforms and optical fibers—I: Experimental study with canonical samples,” IEEE Trans. Nucl. Sci. 55(6), 3473–3482 (2008). [CrossRef]
  33. E. M. Dianov, V. M. Mashinsky, V. B. Neustruev, O. D. Sazhin, V. V. Brazhkin, and V. A. Sidorov, “Optical absorption and luminescence of germanium oxygen-deficient centers in densified germanosilicate glass,” Opt. Lett. 22(14), 1089–1091 (1997). [CrossRef] [PubMed]
  34. I. Razdobreev, H. El Hamzaoui, V. Yu. Ivanov, E. F. Kustov, B. Capoen, and M. Bouazaoui, “Optical spectroscopy of bismuth-doped pure silica fiber preform,” Opt. Lett. 35(9), 1341–1343 (2010). [CrossRef] [PubMed]
  35. I. A. Bufetov, S. L. Semenov, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, and E. M. Dianov, “Optical properties of active bismuth centres in silica fibres containing no other dopants,” Quantum Electron. 40(7), 639–641 (2010). [CrossRef]
  36. L. N. Skuja, A. N. Trukhin, and A. E. Plaudis, “Luminescence in germanium-doped glassy SiO2,” Phys. Status Solidi A 84(2), K153–K157 (1984). [CrossRef]
  37. D. L. Griscom, “Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry,” J. Non-Cryst. Solids 352(23-25), 2601–2617 (2006). [CrossRef]
  38. Y. Watanabe, H. Kawazoe, K. Shibuya, and K. Muta, “Structure and mechanism of formation of drawing- or radiation-induced defects in SiO2:GeO2 optical fiber,” Jpn. J. Appl. Phys. 25(Part 1, No. 3), 425–431 (1986). [CrossRef]
  39. E. J. Friebele, D. L. Griscom, and G. H. Sigel., “Defect centers in a germanium-doped silica-core optical fiber,” J. Appl. Phys. 45(8), 3424–3428 (1974). [CrossRef]
  40. D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids . in press, doi.org/10.1016/j.jnoncrysol.2010.11.011 .
  41. A. N. Trukhin, A. Sharakovski, J. Grube, and D. L. Griscom, “Sub-band-gap-excited luminescence of localized states in SiO2–Si and SiO2–Al glasses,” J. Non-Cryst. Solids 356(20-22), 982–986 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited