OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6635–6647

Fiber-optic Cherenkov radiation in the few-cycle regime

Guoqing Chang, Li-Jin Chen, and Franz X. Kärtner  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6635-6647 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fiber-optic Cherenkov radiation has emerged as a wavelength conversion technique to achieve isolated spectrum in the visible wavelength range. Most published results have reinforced the impression that CR forms a narrowband spectrum with poor efficiency. We both theoretically and experimentally investigate fiber-optic Cherenkov radiation excited by few-cycle pulses. We introduce the coherence length to quantify the Cherenkov-radiation bandwidth and its dependence on propagation distance. Detailed numerical simulations verified by experimental results reveal three unique features that are absent when pumped with often-used, long pulses; that is, continuum generation (may span one octave in connection with the pump spectrum), high conversion efficiency (up to 40%), and broad bandwidth (70 nm experimentally obtained) for the isolated Cherenkov radiation spectrum. These merits allow achieving broadband visible-wavelength spectra from low-energy ultrafast sources which opens up new applications (e.g. precision calibration of astronomical spectrographs).

© 2011 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.3510) Lasers and laser optics : Lasers, fiber
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 4, 2011
Revised Manuscript: February 22, 2011
Manuscript Accepted: March 10, 2011
Published: March 23, 2011

Guoqing Chang, Li-Jin Chen, and Franz X. Kärtner, "Fiber-optic Cherenkov radiation in the few-cycle regime," Opt. Express 19, 6635-6647 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986). [CrossRef] [PubMed]
  2. P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41(1), 426–439 (1990). [CrossRef] [PubMed]
  3. V. I. Karpman, “Radiation by solitons due to higher-order dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47(3), 2073–2082 (1993). [CrossRef] [PubMed]
  4. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995). [CrossRef] [PubMed]
  5. J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114(3–4), 321–328 (1995). [CrossRef]
  6. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003). [CrossRef] [PubMed]
  7. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003). [CrossRef] [PubMed]
  8. S. Stark, F. Biancalana, A. Podlipensky, and P. St. J.Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero dispersion points,” Phys. Rev. A 83(2), 023808 (2011). [CrossRef]
  9. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016619 (2005). [CrossRef] [PubMed]
  10. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001). [CrossRef] [PubMed]
  11. A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher- order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19(9), 2171–2182 (2002). [CrossRef]
  12. L. Tartara, I. Cristiani, and V. Degiorgio, “Blue light and infrared continuum generation by soliton fission in a microstructured fiber,” Appl. Phys. B 77(2–3), 307–311 (2003). [CrossRef]
  13. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generation in microstructured fibers with sub-30 fs pulses,” Opt. Express 12(19), 4614–4624 (2004). [CrossRef] [PubMed]
  14. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14(25), 11997–12007 (2006). [CrossRef] [PubMed]
  15. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007). [CrossRef]
  16. S. P. Stark, A. Podlipensky, N. Y. Joly, and P. St. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber,” J. Opt. Soc. Am. B 27(3), 592–598 (2010). [CrossRef]
  17. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  18. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Effects of higher-order dispersion on resonant dispersive waves emitted by solitons,” Opt. Lett. 34(13), 2072–2074 (2009). [CrossRef] [PubMed]
  19. A. A. Amorim, H. M. Crespo, M. Miranda, J. L. Silva, and L. M. Bernardo, “Study of non-solitonic blue-green radiation generated in mm-long photonic crystal fibers,” Proc. SPIE 6187, 618717 (2006). [CrossRef]
  20. A. V. Mitrofanov, Y. M. Linik, R. Buczynski, D. Pysz, D. Lorenc, I. Bugar, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, and A. M. Zheltikov, “Highly birefringent silicate glass photonic-crystal fiber with polarization-controlled frequency-shifted output: A promising fiber light source for nonlinear Raman microspectroscopy,” Opt. Express 14(22), 10645–10651 (2006). [CrossRef] [PubMed]
  21. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17(12), 9858–9872 (2009). [CrossRef] [PubMed]
  22. H. Tu and S. A. Boppart, “Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers,” Opt. Express 17(20), 17983–17988 (2009). [CrossRef] [PubMed]
  23. G. Q. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010). [CrossRef] [PubMed]
  24. F. X. Kärtner, ed., Few-Cycle Laser Pulse Generation and Its Applications (Springer, 2004).
  25. S. Hill, C. E. Kuklewicz, U. Leonhardt, and F. König, “Evolution of light trapped by a soliton in a microstructured fiber,” Opt. Express 17(16), 13588–13600 (2009). [CrossRef] [PubMed]
  26. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010). [CrossRef]
  27. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  28. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31(21), 3086–3088 (2006). [CrossRef] [PubMed]
  29. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996). [CrossRef]
  30. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23(5), 510–524 (1987). [CrossRef]
  31. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Effects of higher-order dispersion on resonant dispersive waves emitted by solitons,” Opt. Lett. 34(13), 2072–2074 (2009). [CrossRef] [PubMed]
  32. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007). [CrossRef]
  33. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1,” Nature 452(7187), 610–612 (2008). [CrossRef] [PubMed]
  34. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  35. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008). [CrossRef]
  36. G. Q. Chang, C.-H. Li, D. F. Phillips, R. L. Walsworth, and F. X. Kärtner, “Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers,” Opt. Express 18(12), 12736–12747 (2010). [CrossRef] [PubMed]
  37. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010). [CrossRef]
  38. C.-H. Li, A. G. Glenday, A. J. Benedick, G. Q. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm−1,” Opt. Express 18(12), 13239–13249 (2010). [CrossRef] [PubMed]
  39. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum. 81(6), 063105 (2010). [CrossRef] [PubMed]
  40. A. J. Benedick, G. Q. Chang, J. R. Birge, L.-J. Chen, A. G. Glenday, C.-H. Li, D. F. Phillips, A. Szentgyorgyi, S. Korzennik, G. Furesz, R. L. Walsworth, and F. X. Kärtner, “Visible wavelength astro-comb,” Opt. Express 18(18), 19175–19184 (2010). [CrossRef] [PubMed]
  41. F. Bouchy, F. Pepe, and D. Queloz, “Fundamental photon noise limit to radial velocity measurements,” Astron. Astrophys. 374(2), 733–739 (2001). [CrossRef]
  42. C.-H. Li, G. Q. Chang, L.-J. Chen, D. Phillips, F. Kärtner, and R. Walsworth, “Lab demonstration and characterization of a green astro-comb,” Advanced Solid-State Photonics (ASSP) (2011), paper AME5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited