OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6705–6713

Distortion free pulse delay system using a pair of tunable white light cavities

H. N. Yum, M. E. Kim, Y. J. Jang, and M. S. Shahriar  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6705-6713 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1071 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently, a tunable bandwidth white light cavity (WLC) was demonstrated by using an anomalously dispersive intra-cavity medium to adjust a cavity linewidth without reducing the cavity buildup factor [G.S. Pati et al., Phys. Rev. Lett. 99, 133601 (2007)]. In this paper, we show theoretically how such a WLC can be used to realize a distortion-free delay system for a data pulse. The system consists of two WLCs placed in series. Once the pulse has passed through them, the fast-light media in both WLCs are deactivated, so that each of these now acts as a very high reflectivity mirror. The data pulse bounces around between these mirrors, undergoing negligible attenuation per pass. The trapped pulse can be released by activating the fast-light medium in either WLC. Numerical simulations show that such a system can far exceed the delay-bandwidth constraint encountered in a typical data buffer employing slow light. We also show that the pulse remains virtually undistorted during the process.

© 2011 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 5, 2011
Revised Manuscript: February 11, 2011
Manuscript Accepted: February 22, 2011
Published: March 24, 2011

H. N. Yum, M. E. Kim, Y. J. Jang, and M. S. Shahriar, "Distortion free pulse delay system using a pair of tunable white light cavities," Opt. Express 19, 6705-6713 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  2. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002). [CrossRef] [PubMed]
  3. R. Kolesov, “Coherent population trapping in a crystalline solid at room temperature,” Phys. Rev. A 72(5), 051801 (2005). [CrossRef]
  4. M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28(10), 831–833 (2003). [CrossRef] [PubMed]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003). [CrossRef] [PubMed]
  6. P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. L. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005). [CrossRef]
  7. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005). [CrossRef] [PubMed]
  8. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005). [CrossRef] [PubMed]
  9. K. Y. Song and M. G. Herráez, “L and Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 12, 82–88 (2005). [CrossRef]
  10. K. Y. Song, K. S. Abedin, and K. Hotate, “Gain-assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering,” Opt. Express 16(1), 225–230 (2008). [CrossRef] [PubMed]
  11. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As(2)Se(3) chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006). [CrossRef] [PubMed]
  12. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  13. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005). [CrossRef]
  14. Z. J. Deng, D. K. Qing, P. R. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96(2), 023602 (2006). [CrossRef] [PubMed]
  15. B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gbit/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007). [CrossRef]
  16. Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066616 (2003). [CrossRef]
  17. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006). [CrossRef] [PubMed]
  18. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99(13), 133601 (2007). [CrossRef] [PubMed]
  19. R. W. Boyd, and D. J. Gauthier, “Slow and fast light,” in Progress in Optics: Volume 43, E. Wolf, ed. (Elsevier, Amsterdam, 2002), Chap. 6.
  20. Note that ng(WLC) is different from ng: the latter (ng) epresents the group index of the medium inside the WLC, while the former (ng(WLC)) represents an effective group index of the WLC as a whole, including the cavity mirrors. Similarly, vg(WLC) is the effective group velocity for the WLC as a whole, while vgis the group velocity of the material inside the WLC.
  21. H. N. Yum, Y. J. Jang, and M. S. Shahriar, “Pulse propagation through a dispersive intracavity medium,” http://arxiv.org/abs/1012.4483 .
  22. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000). [CrossRef] [PubMed]
  23. H. N. Yum, Y. J. Jang, M. E. Kim, and M. S. Shahriar, “Pulse delay via tunable white light cavities using fiber optic resonators,” http://arxiv.org/abs/1012.5482 .
  24. E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited