OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6741–6748

Real-time determination of laser beam quality by modal decomposition

Oliver A. Schmidt, Christian Schulze, Daniel Flamm, Robert Brüning, Thomas Kaiser, Siegmund Schröter, and Michael Duparré  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6741-6748 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a real-time method to determine the beam propagation ratio M2 of laser beams. The all-optical measurement of modal amplitudes yields M2 parameters conform to the ISO standard method. The experimental technique is simple and fast, which allows to investigate laser beams under conditions inaccessible to other methods.

© 2011 OSA

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(090.1760) Holography : Computer holography
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 18, 2011
Revised Manuscript: March 11, 2011
Manuscript Accepted: March 13, 2011
Published: March 24, 2011

Oliver A. Schmidt, Christian Schulze, Daniel Flamm, Robert Brüning, Thomas Kaiser, Siegmund Schröter, and Michael Duparré, "Real-time determination of laser beam quality by modal decomposition," Opt. Express 19, 6741-6748 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues , M. Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper MQ1.
  2. International Organization for Standardization, ISO 11146-1/2/3 Test methods for laser beam widths, divergence angles and beam propagation ratios – Part 1: Stigmatic and simple astigmatic beams / Part 2: General astigmatic beams / Part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods (ISO, Geneva, 2005). [PubMed]
  3. B. Schäfer and K. Mann, “Determination of beam parameters and coherence properties of laser radiation by use of an extended Hartmann-Shack wave-front sensor,” Appl. Opt. 41, 2809–2817 (2002). [CrossRef] [PubMed]
  4. B. Eppich, G. Mann, and H. Weber, “Measurement of the four-dimensional Wigner distribution of paraxial light sources,” in Optical Design and Engineering II , L. Mazuray and R. Wartmann, eds., Proc. SPIE 5962, 59622D (2005).
  5. R. W. Lambert, R. Cortés-Martínez, A. J. Waddie, J. D. Shephard, M. R. Taghizadeh, A. H. Greenaway, and D. P. Hand, “Compact optical system for pulse-to-pulse laser beam quality measurement and applications in laser machining,” Appl. Opt. 43, 5037–5046 (2004). [CrossRef] [PubMed]
  6. A. E. Siegman, Lasers (University Science Books, 1986).
  7. S. Saghafi and C. J. R. Sheppard, “The beam propagation factor for higher order Gaussian beams,” Opt. Commun. 153, 207–210 (1998). [CrossRef]
  8. E. Tervonen, J. Turunen, and A. Friberg, “Transverse laser mode structure determination from spatial coherence measurements: experimental results,” Appl. Phys. B 49, 409–414 (1989). [CrossRef]
  9. A. Cutolo, T. Isernia, I. Izzo, R. Pierri, and L. Zeni, “Transverse mode analysis of a laser beam by near-and far-field intensity measurements,” Appl. Opt. 34, 7974–7978 (1995). [CrossRef] [PubMed]
  10. M. Santarsiero, F. Gori, R. Borghi, and G. Guattari, “Evaluation of the modal structure of light beams composed of incoherent mixtures of Hermite-Gaussian modes,” Appl. Opt. 38, 5272–5281 (1999). [CrossRef]
  11. X. Xue, H. Wei, and A. G. Kirk, “Intensity-based modal decomposition of optical beams in terms of Hermite-Gaussian functions,” J. Opt. Soc. Am. A 17, 1086–1091 (2000). [CrossRef]
  12. N. Andermahr, T. Theeg, and C. Fallnich, “Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers,” Appl. Phys. B 91, 353–357 (2008). [CrossRef]
  13. V. A. Soifer and M. Golub, Laser Beam Mode Selection by Computer Generated Holograms (CRC Press, 1994).
  14. M. Duparré, B. Lüdge, and S. Schröter, “On-line characterization of Nd:YAG laser beams by means of modal decomposition using diffractive optical correlation filters,” in Optical Design and Engineering II , L. Mazuray and R. Wartmann, eds., Proc. SPIE 5962, 59622G (2005).
  15. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17, 9347–9356 (2009). [CrossRef] [PubMed]
  16. D. Flamm, O. A. Schmidt, C. Schulze, J. Borchardt, T. Kaiser, S. Schröter, and M. Duparré, “Measuring the spatial polarization distributionof multimode beams emerging from passive step-index large-mode-area fibers,” Opt. Lett. 35, 3429–3431 (2010). [CrossRef] [PubMed]
  17. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef] [PubMed]
  18. H. Laabs and B. Ozygus, “Excitation of Hermite-Gaussian modes in end-pumped solid-state lasers via off-axis pumping,” Opt. Laser Technol. 28, 213–214 (1996). [CrossRef]
  19. G. Szegö, Orthogonal Polynomials (Amer. Math. Soc., 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited