OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6777–6782

Stable, 12 W, continuous-wave single-frequency Nd:YVO4 green laser polarized and dual-end pumped at 880 nm

Jianli Liu, Zhiyong Wang, Hong Li, Qin Liu, and Kuanshou Zhang  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6777-6782 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (909 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on a polarized and dual-end pumping scheme and a ring resonator, a stable, high power and high beam quality continuous-wave single-frequency Nd:YVO4 green laser directly pumped at 880 nm has been fabricated. A measured maximum output power of 12 W at 532nm was obtained with a conversion efficiency of 23.1%. The stability of the output was better than ±0.5% and no mode hopping was observed over a period of five hours. The output beam was almost diffraction limited with a measured beam quality of M2x=1.03 and M2y=1.02. The intensity noise reached the shot noise limit (SNL) for analysis frequencies above 3.5 MHz, and the phase noise was 1.3 dB above the SNL in the range of 2 to 20 MHz.

© 2011 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3560) Lasers and laser optics : Lasers, ring
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 1, 2011
Revised Manuscript: March 16, 2011
Manuscript Accepted: March 16, 2011
Published: March 24, 2011

Jianli Liu, Zhiyong Wang, Hong Li, Qin Liu, and Kuanshou Zhang, "Stable, 12 W, continuous-wave single-frequency Nd:YVO4 green laser polarized and dual-end pumped at 880 nm," Opt. Express 19, 6777-6782 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32(4), 400–402 (2007). [CrossRef] [PubMed]
  2. J. M. Melkonian, T. H. My, F. Bretenaker, and C. Drag, “High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red,” Opt. Lett. 32(5), 518–520 (2007). [CrossRef] [PubMed]
  3. C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007). [CrossRef]
  4. A. S. Villar, K. N. Cassemiro, K. Dechoum, A. Z. Khoury, M. Martinelli, and P. Nussenzveig, “Entanglement in the above-threshold optical parametric oscillator,” J. Opt. Soc. Am. B 24(2), 249–256 (2007). [CrossRef]
  5. R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38(36), 7382–7385 (1999). [CrossRef]
  6. X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282(5), 981–984 (2009). [CrossRef]
  7. Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003). [CrossRef]
  8. N. Pavel and T. Taira, “High-Power Continuous-Wave Intracavity Frequency-Doubled Nd:GdVO4-LBO Laser Under Diode Pumping Into the Emitting Level,” IEEE J. Sel. Top. Quantum Electron. 11(3), 631–637 (2005). [CrossRef]
  9. L. McDonagh and R. Wallenstein, “Low-noise 62 W CW intracavity-doubled TEM00 Nd:YVO4 green laser pumped at 888 nm,” Opt. Lett. 32(7), 802–804 (2007). [CrossRef] [PubMed]
  10. L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, “High-efficiency 60 W TEM(00) Nd:YVO(4) oscillator pumped at 888 nm,” Opt. Lett. 31(22), 3297–3299 (2006). [CrossRef] [PubMed]
  11. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968). [CrossRef]
  12. J. T. Lina, J. L. Montgomerya, and K. Katob, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80(2), 159–165 (1990). [CrossRef]
  13. Y. H. Zheng, H. D. Lu, F. Q. Li, K. S. Zhang, and K. C. Peng, “Four watt long-term stable intracavity frequency-doubling Nd:YVO(4) laser of single-frequency operation pumped by a fiber-coupled laser diode,” Appl. Opt. 46(22), 5336–5339 (2007). [CrossRef] [PubMed]
  14. S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE. QE 22, 617–624 (1986). [CrossRef]
  15. T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited