OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6797–6806

Pulsed, single-frequency, ring laser with a holographic output coupler

Alex Dergachev  »View Author Affiliations

Optics Express, Vol. 19, Issue 7, pp. 6797-6806 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (991 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A unidirectional, passively Q-switched, 2.05-μm Ho:YLF ring laser providing single-frequency, sub-mJ-energy, 100-200-ns-long laser pulses at a kHz rate is reported. The wavelength selection and “coarse” spectral narrowing is performed by utilizing a volume Bragg grating as a resonant, narrowband output coupler operated at a small angle away from normal incidence. Pulsed operation of the Ho:YLF oscillator and further spectral narrowing down to a single longitudinal mode is achieved via passive Q-switching using a Cr2+-doped saturable absorber.

© 2011 OSA

OCIS Codes
(140.3560) Lasers and laser optics : Lasers, ring
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 8, 2011
Revised Manuscript: March 16, 2011
Manuscript Accepted: March 17, 2011
Published: March 24, 2011

Alex Dergachev, "Pulsed, single-frequency, ring laser with a holographic output coupler," Opt. Express 19, 6797-6806 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
  2. I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2005). [CrossRef]
  3. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quant. Electron. 32(6), 885–895 (1996). [CrossRef]
  4. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997). [CrossRef]
  5. A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54- μm Er:glass lasers,” Opt. Lett. 24(14), 960–962 (1999). [CrossRef]
  6. T. Y. Tsai and M. Birnbaum, “Q-switched 2- μm lasers by use of a Cr2+:ZnSe saturable absorber,” Appl. Opt. 40(36), 6633–6637 (2001). [CrossRef]
  7. A. Di Lieto, P. Minguzzi, A. Toncelli, M. Tonelli, and H. P. Jenssen, “A diode-laser-pumped tunable Ho:YLF laser in the 2 μm region,” Appl. Phys. B 58(1), 69–71 (1994). [CrossRef]
  8. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999). [CrossRef]
  9. A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, “High power CW Tm:YLF laser with a holographic output coupler,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThZ3. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2004-CThZ3
  10. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30(17), 2281–2283 (2005). [CrossRef] [PubMed]
  11. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity,” Opt. Express 14(20), 9284–9292 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9284 . [CrossRef] [PubMed]
  12. I. S. Moskalev, V. V. Fedorov, V. P. Gapontsev, D. V. Gapontsev, N. S. Platonov, and S. B. Mirov, “Highly efficient, narrow-linewidth, and single-frequency actively and passively Q-switched fiber-bulk hybrid Er:YAG lasers operating at 1645 nm,” Opt. Express 16(24), 19427–19433 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19427 . [CrossRef] [PubMed]
  13. W. R. Sooy, “The natural selection of modes in a passive q-switched laser,” Appl. Phys. Lett. 7(2), 36–37 (1965). [CrossRef]
  14. Y. Isyanova and D. Welford, “Temporal criterion for single-frequency operation of passively Q-switched lasers,” Opt. Lett. 24(15), 1035–1037 (1999). [CrossRef]
  15. D. C. Jones and D. A. Rockwell, “Single-frequency, 500-ns laser pulses generated by a passively Q-switched Nd laser,” Appl. Opt. 32(9), 1547–1550 (1993). [CrossRef] [PubMed]
  16. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008). [CrossRef]
  17. B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, “Widely tunable Yb:KYW laser with a volume Bragg grating,” Opt. Express 15(3), 1003–1010 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1003 . [CrossRef] [PubMed]
  18. B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “Narrowband and tunable ring optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 32(22), 3278–3280 (2007). [CrossRef] [PubMed]
  19. A. Dergachev, “Ring resonator with holographic reflector,” Patent pending.
  20. A. E. Siegman, Lasers (University Science Books, 1986).
  21. D. J. Bradley, C. J. Mitchell, and M. S. Petty, “Direct measurement of the spectral width of a transform-limited ruby laser giant pulse,” Opt. Commun. 1(5), 245–247 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited