OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6829–6835

Plasma filament investigation by transverse optical interferometry and terahertz scattering

Sergey Bodrov, Vladimir Bukin, Maxim Tsarev, Aleksey Murzanev, Sergey Garnov, Nickolay Aleksandrov, and Andrey Stepanov  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6829-6835 (2011)
http://dx.doi.org/10.1364/OE.19.006829


View Full Text Article

Enhanced HTML    Acrobat PDF (953 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transverse plasma distribution with 1017 cm−3 maximum electron density and 150 μm transverse size in a plasma filament formed in air by an intense femtosecond laser pulse was measured by means of optical interferometry. Two orders of magnitude decay of the electron density within 2 ns was obtained by combined use of the interferometry and newly proposed terahertz scattering techniques. Excellent agreement was obtained between the measured plasma density evolution and theoretical calculation.

© 2011 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(040.2235) Detectors : Far infrared or terahertz
(280.5395) Remote sensing and sensors : Plasma diagnostics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 15, 2011
Revised Manuscript: March 12, 2011
Manuscript Accepted: March 14, 2011
Published: March 24, 2011

Citation
Sergey Bodrov, Vladimir Bukin, Maxim Tsarev, Aleksey Murzanev, Sergey Garnov, Nickolay Aleksandrov, and Andrey Stepanov, "Plasma filament investigation by transverse optical interferometry and terahertz scattering," Opt. Express 19, 6829-6835 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6829


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007). [CrossRef]
  2. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007). [CrossRef]
  3. F. Théberge, W. Liu, P. Tr. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006). [CrossRef] [PubMed]
  4. J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J. P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Opt. 42(36), 7117–7120 (2003). [CrossRef]
  5. S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun. 181(1-3), 123–127 (2000). [CrossRef]
  6. J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 026412 (2005). [CrossRef] [PubMed]
  7. C. Y. Chien, B. La Fontaine, A. Desparois, Z. Jiang, T. W. Johnston, J. C. Kieffer, H. Pépin, F. Vidal, and H. P. Mercure, “Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamics of air,” Opt. Lett. 25(8), 578–580 (2000). [CrossRef]
  8. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982). [CrossRef]
  9. A. Stepanov, N. Bochkarev, and A. Kabanov, “Spatial localization of the region of filamentation along the trace of propagation of focused femtosecond laser radiation in air,” Atmosphere. Oceanic Opt. J. 20, 859–862 (2007).
  10. I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, “Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures,” Plasma Sources Sci. Technol. 1(3), 207–220 (1992). [CrossRef]
  11. F. J. Mehr and M. A. Biondi, “Electron temperature dependence of recombination of O2+ and N2+ ions with electrons,” Phys. Rev. 181(1), 264–271 (1969). [CrossRef]
  12. L. M. Biberman, V. S. Vorobyev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasma (Nauka, Moscow, 1982 in Russian) [(Consultants Bureau, New York, 1987 in English)].
  13. N. L. Aleksandrov, S. V. Kindysheva, M. M. Nudnova, and A. Yu. Starikovskiy, “Mechanism of ultra-fast heating in a non-equilibrium weakly ionized air discharge plasma in high electric fields,” J. Phys. D Appl. Phys. 43(25), 255201 (2010). [CrossRef]
  14. N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, and A. G. Sukharev, EEDF: the software package for calculations of the electron energy distribution function in gas mixtures. http://www.lxcat.laplace.univ-tlse.fr/software/EEDF/
  15. A. I. Florescumitchell and J. B. A. Mitchell, “Dissociative recombination,” Phys. Rep. 430(5-6), 277–374 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited