OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6845–6857

Spatial-domain-based multidimensional modulation for multi-Tb/s serial optical transmission

Ivan B. Djordjevic, Murat Arabaci, Lei Xu, and Ting Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6845-6857 (2011)
http://dx.doi.org/10.1364/OE.19.006845


View Full Text Article

Enhanced HTML    Acrobat PDF (1290 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The multidimensional channel capacity studies indicate that the employment of multiple photon degrees of freedom—such as subcarrier, amplitude, phase, polarization, and space—can improve the spectral efficiency by several orders of magnitude higher than that claimed in any fiber-optic experiment reported to date. This dramatic increase in spectral efficiency through multiple photon degrees of freedom can provide revolutionary capabilities for future optical networks. Moreover, photons can carry both spin angular momentum (SAM) associated with polarization, and orbital angular momentum (OAM) associated with the azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal, an arbitrary number of bits per photon can be transmitted in principle. The ability to generate the OAM modes, such as Bessel modes, in multimode fibers (MMFs) will allow realization of fiber-optic communication networks with ultra-high bits-per-photon efficiencies. To this end, we propose here a spatial-domain-based multidimensional coded-modulation scheme as an enabling technology for multi-Tb/s serial optical transport. To demonstrate the capabilities of the proposed scheme, we show that an eight-dimensional (8D) spatial-domain-based coded modulation scheme outperforms a prior-art 128-point 4D scheme by 3.88 dB at BER of 10−8 while providing 120 Gb/s higher aggregate information bit rate. The proposed 8D scheme also outperforms its conventional polarization-multiplexed QAM counterpart by even a larger, and indeed striking, margin of 8.39 dB (also at the BER of 10−8).

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.4080) Fiber optics and optical communications : Modulation
(060.4230) Fiber optics and optical communications : Multiplexing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 18, 2011
Revised Manuscript: March 17, 2011
Manuscript Accepted: March 18, 2011
Published: March 24, 2011

Citation
Ivan B. Djordjevic, Murat Arabaci, Lei Xu, and Ting Wang, "Spatial-domain-based multidimensional modulation for multi-Tb/s serial optical transmission," Opt. Express 19, 6845-6857 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6845


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Cvijetic, Optical Transmission Systems Engineering (Artech House, Inc., 2004).
  2. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Elsevier/Academic Press, 2009).
  3. P. Winzer, “Beyond 100G ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010). [CrossRef]
  4. J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007). [CrossRef]
  5. I. Djordjevic, H. G. Batshon, L. Xu, and T. Wang, “Four-dimensional optical multiband-OFDM for beyond 1.4 Tb/s serial optical transmission,” Opt. Express 19(2), 876–882 (2011). [CrossRef] [PubMed]
  6. H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Modified hybrid subcarrier/amplitude/ phase/polarization LDPC-coded modulation for 400 Gb/s optical transmission and beyond,” Opt. Express 18(13), 14108–14113 (2010). [CrossRef] [PubMed]
  7. H. G. Batshon, I. B. Djordjevic, and T. Schmidt, “Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPC-coded modulation,” Opt. Express 18(19), 20546–20551 (2010). [CrossRef] [PubMed]
  8. I. B. Djordjevic and M. Arabaci, “LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication,” Opt. Express 18(24), 24722–24728 (2010). [CrossRef] [PubMed]
  9. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004). [CrossRef] [PubMed]
  10. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” Appl. Opt. 47(13), 2414–2429 (2008). [CrossRef] [PubMed]
  11. I. Gasulla and J. Capmany, “1 Tb/s x km multimode fiber link combining WDM transmission and low-linewidth lasers,” Opt. Express 16(11), 8033–8038 (2008). [CrossRef] [PubMed]
  12. Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gb/s coherent optical OFDM transmission over multimode fiber,” in Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (Engineers Australia and the Australian Optical Society, 2008), paper PDP-5.
  13. S. Murshid, B. Grossman, and P. Narakorn, “Spatial domain multiplexing: a new dimension in fiber optic multiplexing,” Opt. Laser Technol. 40(8), 1030–1036 (2008). [CrossRef]
  14. S. Murshid, B. Grossman, and P. Narakorn, “Methods and apparatus for spatial domain multiplexing in optical fiber communications,” US Patent No. 7,174,067 (2006).
  15. S. Murshid and J. Iqbal, “Spatial combination of optical channels in a multimode waveguide,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JWA32.
  16. S. Murshid and J. Iqbal, “Array of concentric CMOS photodiodes for detection and de-multiplexing of spatially modulated optical channels,” Opt. Laser Technol. 41(6), 764–769 (2009). [CrossRef]
  17. S. Murshid, A. Chakravarty, and R. Biswas, “Simultaneous transmission of two channels operating at the same wavelength in standard multimode fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA107.
  18. S. Murshid and A. Chakravarty, “Tapered optical fiber quadruples bandwidth of multimode silica fibers using same wavelength,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FWI2.
  19. A. Li, A. Al Amin, X. Chen, and W. Shieh, “Reception of mode and polarization multiplexed 107-Gb/s CO-OFDM signal over a two-mode fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), postdeadline papers (Optical Society of America, 2011), paper PDPB8.
  20. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2x100Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS-based mode multiplexer and demultiplexer,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), postdeadline papers (Optical Society of America, 2011), paper PDPB9.
  21. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), postdeadline papers (Optical Society of America, 2011), paper PDPB10.
  22. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission though 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), postdeadline papers (Optical Society of America, 2011), paper PDPB6.
  23. B. Zhu, T. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. Yan, J. Fini, E. Monberg, F. Dimarcello, K. Abedin, P. Wisk, D. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), postdeadline papers (Optical Society of America, 2011), Paper PDPB7.
  24. J. Sakai, K. Kitayama, M. Ikeda, Y. Kato, and K. Tatsuya, “Design considerations of broadband dual-mode optical fibers,” IEEE Trans. Microw. Theory Tech. 26(9), 658–665 (1978). [CrossRef]
  25. D. Marcuse, “Pulse propagation in two-mode waveguide,” Bell Syst. Tech. J. 51, 1785–1791 (1972).
  26. M. Cvijetic, “Dual-mode optical fibers with zero intermodal dispersion,” Opt. Quantum Electron. 16(4), 307–317 (1984). [CrossRef]
  27. M. Cvijetic, Digital Optical Communications (Naučna Knjiga, 1989).
  28. R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, R. H. Miles, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, S. C. Pennypacker, J. L. Pleumeekers, R. A. Salvatore, R. K. Schlenker, R. B. Taylor, M. F. Huan-Shang Tsai, J. Van Leeuwen, M. Webjorn, D. Ziari, J. Perkins, S. G. Singh, M. S. Grubb, D. G. Reffle, F. A. Mehuys, Kish, and D. F. Welch, “Large-scale photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 11(1), 50–65 (2005). [CrossRef]
  29. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons Inc, 1975).
  30. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  31. I. B. Djordjevic, M. Arabaci, and L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009). [CrossRef]
  32. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, 2002).
  33. A. A. Savchenkov, A. B. Matsko, I. Grudinin, E. A. Savchenkova, D. Strekalov, and L. Maleki, “Optical vortices with large orbital momentum: generation and interference,” Opt. Express 14(7), 2888–2897 (2006). [CrossRef] [PubMed]
  34. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited