OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6883–6902

Combined guiding effect in the end-pumped laser resonator

Xingpeng Yan, Qiang Liu, Dongsheng Wang, and Mali Gong  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6883-6902 (2011)
http://dx.doi.org/10.1364/OE.19.006883


View Full Text Article

Enhanced HTML    Acrobat PDF (1591 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical model as well as the experimental verification of the combined guiding mechanism for the transverse mode formation in the end-pumped laser resonator are investigated. The nonlinear Schrödinger-type wave equation in the gain medium is derived, in which the combined guiding mechanism: the thermal induced refractive index guiding effect as well as the gain guiding effect, is taken into account. The gain saturation and spatial hole burning are considered. The split step Fourier method is used to solve the nonlinear wave equation. A high power end-pumped Nd:YVO4 laser resonator is built up. After establishing the pump absorption model of our laser resonator, the temperature distribution in the gain medium is obtained by the numerical solving of the heat diffusion equation. The combined guiding effect is first observed in the end-pumped Nd:YVO4 laser resonator, and the experimental transverse mode profiles well agree with the theoretical prediction from the derived nonlinear Schrödinger-type wave equation. The geometric design criterion of the TEM00 mode laser is compared with our wave theory. The experimental- and theoretical- results show that our wave theory with the combined guiding mechanism dominates the transverse mode formation in high power end-pumped laser resonator.

© 2011 OSA

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3430) Lasers and laser optics : Laser theory
(140.3480) Lasers and laser optics : Lasers, diode-pumped

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 5, 2011
Revised Manuscript: February 24, 2011
Manuscript Accepted: March 14, 2011
Published: March 25, 2011

Citation
Xingpeng Yan, Qiang Liu, Dongsheng Wang, and Mali Gong, "Combined guiding effect in the end-pumped laser resonator," Opt. Express 19, 6883-6902 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6883


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Fox and Li Tingye, “Computation of optical resonator modes by the method of resonance excitation,” IEEE J. Quantum Electron . 4, 460–465 (1968). [CrossRef]
  2. B. N. Perry, P. Rabinowitz, and M. Newstein, “Exact solution of the scalar wave equation with focused gaussian gain,” Phys. Rev. Lett. 49, 1921–1924 (1982). [CrossRef]
  3. B. N. Perry, P. Rabinowitz, and M. Newstein, “Wave propagation in media with focused gain,” Phys. Rev. A 27, 1989–2002 (1983). [CrossRef]
  4. C. A. Schrama, D. Bouwmeester, G. Nienhuis, and J. P. Woerdman, “Mode dynamics in optical cavities,” Phys. Rev. A 51, 641–645 (1995) [CrossRef] [PubMed]
  5. C. F. Maes and E. M. Wright, “Mode properties of an external-cavity laser with Gaussian gain,” Opt. Lett. 29, 229–231 (2004). [CrossRef] [PubMed]
  6. T. Y. Fan, “Aperture guiding in quasi-three-level lasers,” Opt. Lett. 19, 554–556 (1994). [CrossRef] [PubMed]
  7. J. J. Zayhowski, “Thermal Guiding in Microchip Lasers,” in Advanced Solid State Lasers , G. Dube, ed., Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper DPL3.
  8. G. K. Harkness and W. J. Firth, “Transverse modes of microchip solid state lasers,” J. Mod. Opt. 39, 2023–2037 (1992). [CrossRef]
  9. J. K. Jabczynski, J. Kwiatkowski, and W. Zendzian, “Gain and thermal guiding effects in diode-pumped lasers,” SPIE 5120, 164(2003) [CrossRef]
  10. F. Salin and J. Squier, “Gain guiding in solid-state lasers,” Opt. Lett. 17, 1352–1354 (1992). [CrossRef] [PubMed]
  11. O. Denchev, S. Kurtev, and P. Petrov, “Experimental investigation of saturable gain-guided modes,” Appl. Opt. 41, 1677–1684 (2002). [CrossRef] [PubMed]
  12. N. J. Druten, S. S. R. Oemrawsingh, Y. Lien, C. Serrat, M. P. van Exter, and J. P. Woerdman, “Observation of transverse modes in a microchip laser with combined gain and index guiding,” J. Opt. Soc. Am. B 18, 1793–1804 (2001). [CrossRef]
  13. A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, “Guiding effects in Nd:YVO4 microchip lasers operating well above threshold,” IEEE J. Quantum Electron. 35, 675–681 (1999). [CrossRef]
  14. S. Longhi, G. Cerullo, S. Taccheo, V. Magni, and P. Laporta, “Experimental observation of transverse effects in microchip solid-state lasers,” Appl. Phys. Lett. 65, 3042–3044 (1994). [CrossRef]
  15. C. Serrat, M. P. Exter, N. J. Druten, and J. P. Woerdman, “Transverse mode formation in microlasers by combined gain- and index-guiding,” IEEE J. Quantum Electron. 35, 1314–1321 (1999). [CrossRef]
  16. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef] [PubMed]
  17. A. E. Siegman, Lasers , (Univ. Sci. Books, 1986), pp. 323.
  18. J. Frauchiger, P. Albers, and H. P. Weber, “Modeling of thermal lensing and higher order ring mode oscillation in end-pumped C-W Nd:YAG lasers,” IEEE J. Quantum Electron. 28, 1046–1056 (1992). [CrossRef]
  19. G. M. Muslu and H. A. Erbay, “Higher-order split-step Fourier schemes for the generalized nonlinear Schrodinger equation,” Math. Comput. Simulat. 67, 581–595 (2005). [CrossRef]
  20. T. R. Taha and X. Xiangming, “Parallel split-step Fourier methods for the coupled nonlinear Schrodinger type equations,” J. Supercomput. 32, 5–23 (2005). [CrossRef]
  21. Y. L. Bogomolov and A. D. Yunakovsky, “Split-step Fourier method for nonlinear Schrodinger equation,” in International Conference Days on Diffraction 2006 , Proceedings of the International Conference ’Days on Diffraction’ 2006, DD (Inst. of Elec. and Elec. Eng. Computer Society, 2006), 34–42. [CrossRef]
  22. W. Koechner, Solid-tate Laser Engineering , 6th ed. (Springer-Verlag Publications, 2006).
  23. D. G. Matthews, J. R. Boon, R. S. Conroy, and B. D. Sinclair, “Comparative study of diode pumped microchip laser materials: Nd-doped YVO4, YOS, SFAP and SVAP,” J. Mod. Opt. 43, 1079–1087 (1996). [CrossRef]
  24. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993). [CrossRef]
  25. H. G. Danielmeyer, M. Blatte, and P. Balmer, “Fluorescence quenching in Nd:YAG,” Appl. Phys. A 1, 269–274 (1973).
  26. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10, 1727–1729 (1998). [CrossRef]
  27. P. Xiaoyuan, X. Lei, and A. Asundi, “Power scaling of diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 38, 1291–1299 (2002). [CrossRef]
  28. B. Comaskey, B. D. Moran, G. F. Albrecht, and R. J. Beach, “Characterization of the heat loading of Nd-doped YAG, YOS, YLF, and GGG excited at diode pumping wavelengths,” IEEE J. Quantum Electron. 31, 1261–1264 (1995). [CrossRef]
  29. P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991). [CrossRef]
  30. Y. F. Chen, T. S. Liao, C. F. Kao, T. M. Huang, K. H. Lin, and S. C. Wang, “Optimization of fiber-coupled laser-diode end-pumped lasers: influence of pump-beam quality,” IEEE J. Quantum Electron. 322010–2016 (1996). [CrossRef]
  31. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D 34, 2381–2395 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited