OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7077–7083

Micro-integrated 1 Watt semiconductor laser system with a linewidth of 3.6 kHz

Stefan Spießberger, Max Schiemangk, Alexander Sahm, Andreas Wicht, Hans Wenzel, Achim Peters, Götz Erbert, and Günther Tränkle  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7077-7083 (2011)
http://dx.doi.org/10.1364/OE.19.007077


View Full Text Article

Enhanced HTML    Acrobat PDF (1994 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a compact, narrow-linewidth, high-power, micro-integrated semiconductor-based master oscillator power amplifier laser module which is implemented on a footprint of 50 x 10 mm2. A micro-isolator between the oscillator and the amplifier suppresses optical feedback. The oscillator is a distributed Bragg reflector laser optimized for narrow-linewidth operation and the amplifier consists of a ridge waveguide entry and a tapered amplifier section. The module features stable single-mode operation with a FWHM linewidth of only 100 kHz and an intrinsic linewidth as small as 3.6 kHz for an output power beyond 1 W.

© 2011 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(060.1660) Fiber optics and optical communications : Coherent communications
(130.3120) Integrated optics : Integrated optics devices
(140.2020) Lasers and laser optics : Diode lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.1480) Optical devices : Bragg reflectors
(290.3700) Scattering : Linewidth

ToC Category:
Lasers and Laser Pointers

History
Original Manuscript: January 20, 2011
Revised Manuscript: March 8, 2011
Manuscript Accepted: March 8, 2011
Published: March 29, 2011

Citation
Stefan Spießberger, Max Schiemangk, Alexander Sahm, Andreas Wicht, Hans Wenzel, Achim Peters, Götz Erbert, and Günther Tränkle, "Micro-integrated 1 Watt semiconductor laser system with a linewidth of 3.6 kHz," Opt. Express 19, 7077-7083 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7077


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron . 18, 259–264 (1982). [CrossRef]
  2. B. Tromborg, H. Olesen, and X. Pan, “Theory of linewidth for multielectrode laser diodes with spatially distributed noise sources,” IEEE J. Quantum Electron. 27, 178–192 (1991). [CrossRef]
  3. X. Pan, B. Tromborg, and H. Olesen, “Linewidth re-broadening in DFB lasers due to weak side modes,” IEEE Photonics Technol. Lett. 3, 112–114 (1991). [CrossRef]
  4. G. Agrawal and R. Roy, “Effect of injection-current fluctuations on the spectral linewidth of semiconductor lasers,” Phys. Rev. A 37, 2495–2501 (1988). [CrossRef] [PubMed]
  5. W. Burkett, B. Lü, and M. Xiao, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997). [CrossRef]
  6. K. Takaki, T. Kise, K. Marayama, N. Yamanaka, M. Funabashi, and A. Kasukawa, “Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-μm continuous-wave distributed-feedback (cw-DFB) laser diodes,” IEEE J. Quantum Electron. 39, 1060–1065 (2003). [CrossRef]
  7. M. Ziegler, J. Tomm, U. Zeimer, and T. Elsaesser, “Imaging catastrophic optical mirror damage in high-power diode lasers,” J. Electron. Mat. 39, 709–714 (2010). [CrossRef]
  8. D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, “High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm,” Proc. SPIE 7583, 758317 (2010). [CrossRef]
  9. J. Verdiell, J. Osinsky, D. Welch, and D. Scifres, “Semiconductor MOPA with monolithically integrated 5 GHz electroabsorption modulator,” Electron. Lett. 31, 1187–1189 (1995). [CrossRef]
  10. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quant. Electron. 1, 480–489 (1995). [CrossRef]
  11. A. Champagne, J. Camel, R. Maciejko, K. Kasunic, D. Adams, and B. Tromborg, “Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier,” IEEE J. Quantum Electron. 381493–1502 (2002). [CrossRef]
  12. A. Wilson, J. Sharpe, C. McKenzie, P. Manson, and D. Warrington, “Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier,” Appl. Opt. 37, 4871–4875 (1998). [CrossRef]
  13. S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346–347 (2006). [CrossRef]
  14. L. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991). [CrossRef]
  15. G. Stéphan, T. Tam, S. Blin, P. Besnard, and M. Têtu, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997). [CrossRef]
  16. K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” Electron. Lett. 23, 885–887 (1987). [CrossRef]
  17. S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm,” J. Lightwave Technol. 28, 2611–2616 (2010). [CrossRef]
  18. S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, G. Erbert, and G. Tränkle, “DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz,” submitted to Appl. Phys. B.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited