OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7153–7160

Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics

Shan-Chuang Pei, Tuan-Shu Ho, Chien-Chung Tsai, Ting-Hao Chen, Yi Ho, Pi-Ling Huang, A. H. Kung, and Sheng-Lung Huang  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7153-7160 (2011)
http://dx.doi.org/10.1364/OE.19.007153


View Full Text Article

Enhanced HTML    Acrobat PDF (1484 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Shaping the ferroelectric domains as waveguide, grating, lens, and prism are key to the successful penetration of periodically-poled ferroelectrics on various wavelength conversion applications. The complicated structures are, however, difficult to be fully characterized, especially the unexpected index contrast at the anti-parallel domain boundaries are typical in the order of 10−4 or less. An ultrahigh resolution optical coherence tomography was employed to fully characterize the domain boundary and structure properties of a periodically-poled lithium niobate (PPLN) waveguide with an axial resolution of 0.68 μm, an transversal resolution of 3.2 μm, and an index contrast sensitivity of 4x10−7. The anti-parallel domain uniformity can clearly be seen non-invasively. Dispersion of the ferroelectric material was also obtained from 500 to 750 nm.

© 2011 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(130.3730) Integrated optics : Lithium niobate
(160.2260) Materials : Ferroelectrics
(230.7370) Optical devices : Waveguides

ToC Category:
Materials

History
Original Manuscript: November 11, 2010
Manuscript Accepted: February 17, 2011
Published: March 30, 2011

Citation
Shan-Chuang Pei, Tuan-Shu Ho, Chien-Chung Tsai, Ting-Hao Chen, Yi Ho, Pi-Ling Huang, A. H. Kung, and Sheng-Lung Huang, "Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics," Opt. Express 19, 7153-7160 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7153


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20(1), 52–54 (1995). [CrossRef] [PubMed]
  2. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22(24), 1834–1836 (1997). [CrossRef]
  3. L. M. Lee, S. C. Pei, D. F. Lin, P. C. Chiu, M. C. Tsai, T. M. Tai, D. H. Sun, A. H. Kung, and S. L. Huang, “Generation of tunable blue-green light using ZnO periodically poled lithium niobate crystal fiber by self-cascaded second-order nonlinearity,” J. Opt. Soc. Am. B 24(8), 1909–1915 (2007). [CrossRef]
  4. J. Wang, J. Sun, C. Lou, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13(19), 7405–7414 (2005). [CrossRef] [PubMed]
  5. K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, and D. D. Stancil, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38(7), 1186–1190 (1999). [CrossRef]
  6. J. Harris, G. Norris, and G. McConnell, “Characterisation of periodically poled materials using nonlinear microscopy,” Opt. Express 16(8), 5667–5672 (2008). [CrossRef] [PubMed]
  7. Y. Sheng, A. Best, H. J. Butt, W. Krolikowski, A. Arie, and K. Koynov, “Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation,” Opt. Express 18(16), 16539–16545 (2010). [CrossRef] [PubMed]
  8. S. Kim, V. Gopalan, and B. Steiner, “Direct x-ray synchrotron imaging of strains at 180° domain walls in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(13), 2051–2053 (2000). [CrossRef]
  9. V. Gopalan and M. C. Gupta, “Origin and characteristics of internal fields in LiNbO3 crystals,” Ferroelectrics 198(1), 49–59 (1997). [CrossRef]
  10. V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect-domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res. 37(1), 449–489 (2007). [CrossRef]
  11. S. Kim and V. Gopalan, “Optical index profile at an antiparallel ferroelectric domain wall in lithium niobate,” Mater. Sci. Eng. B 120(1-3), 91–94 (2005). [CrossRef]
  12. T. J. Yang, V. Gopalan, P. Swart, and U. Mohideen, “Experimental study of internal fields and movement of single ferroelectric domain walls,” J. Phys. Chem. Solids 61(2), 275–282 (2000). [CrossRef]
  13. T. Jach, S. Kim, V. Gopalan, S. Durbin, and D. Bright, “Long-range strains and the effects of applied field at 180° ferroelectric domain walls in lithium niobate,” Phys. Rev. B 69(6), 064113 (2004). [CrossRef]
  14. S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalate,” J. Appl. Phys. 90(6), 2949–2963 (2001). [CrossRef]
  15. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  16. C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett. 35(6), 811–813 (2010). [CrossRef] [PubMed]
  17. K. Wiesauer, M. Pircher, E. Goetzinger, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Gruetzner, and D. Stifter, “Transversal ultrahigh-resolution polarizationsensitive optical coherence tomography for strain mapping in materials,” Opt. Express 14(13), 5945–5953 (2006). [CrossRef] [PubMed]
  18. O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006). [CrossRef]
  19. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997). [CrossRef]
  20. S. M. Zhang, K. M. Wang, X. Liu, Z. Bi, and X. H. Liu, “Planar and ridge waveguides formed in LiNbO3 by proton exchange combined with oxygen ion implantation,” Opt. Express 18(15), 15609–15617 (2010). [CrossRef] [PubMed]
  21. M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87(23), 231108 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited