OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7161–7175

Improving the efficiency of optical coherence tomography by using the non-ideal behaviour of a polarising beam splitter

Norman Lippok, Poul Nielsen, and Frédérique Vanholsbeeck  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7161-7175 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2091 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new way of improving the efficiency of optical coherence tomography by using the polarisation crosstalk of a polarising beam splitter to direct most of the available source optical power to the sample. The use of a quarter wave plate in both the reference and the sample arms allows most of the sample power to be directed to the detector while adjusting the reference arm to ensure noise optimised operation. As a result, the sensitivity of such a system can be improved by 6 dB, or alternatively the acquisition time can be improved by a factor of 4 for shot noise limited performance, compared to a traditional OCT configuration using a 50/50 beam splitter.

© 2011 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(230.1360) Optical devices : Beam splitters

ToC Category:
Imaging Systems

Original Manuscript: December 14, 2010
Revised Manuscript: January 25, 2011
Manuscript Accepted: February 10, 2011
Published: March 30, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Norman Lippok, Poul Nielsen, and Frédérique Vanholsbeeck, "Improving the efficiency of optical coherence tomography by using the non-ideal behaviour of a polarising beam splitter," Opt. Express 19, 7161-7175 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  3. G. Haeusler, and M. W. Lindner, “Coherence radar and spectral radar - New tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998). [CrossRef]
  4. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003). [CrossRef] [PubMed]
  5. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006). [CrossRef] [PubMed]
  6. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003). [CrossRef] [PubMed]
  7. W. V. Sorin, and D. M. Baney, “A Simple Intentisy Noise Reduction Technique for Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992). [CrossRef]
  8. A. M. Rollins, and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999). [CrossRef]
  9. B. E. Bouma, and G. J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt. Lett. 24, 531–533 (1999). [CrossRef]
  10. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Wang, M. E. Williams, and S. E. Fraser, “An optical coherence microscope for 3-dimnensional imaging in developmental biology,” Opt. Express 6, 136–146 (2000). [CrossRef] [PubMed]
  11. G. Tearney, S. A. Boppart, B. E. Bouma, M. Brezinski, E. A. Swanson, and J. G. Fujimoto, “Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope,” US Patent No. 6,134,003 (1996).
  12. C. K. Hitzenberger, “Efficient optical coherence tomography (OCT) system and method for rapid imaging in three dimensions,” US Patent No. 2005/0140984 A1 (2005).
  13. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998). [CrossRef]
  14. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002). [CrossRef] [PubMed]
  15. E. Collett, Polarized light: fundamentals and applications (Marcel Dekker, New York, 1993).
  16. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004). [CrossRef] [PubMed]
  17. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003). [CrossRef] [PubMed]
  18. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010). [CrossRef] [PubMed]
  19. B. Liu, M. Harman, and M. E. Brezinski, “Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms,” J. Opt. Soc. Am. A 2, 262–271 (2005). [CrossRef]
  20. B. Liu, M. Harman, S. Giattina, D. L. Stanper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with singe-detector polarization-sensitive optical coherence tomography,” Appl. Opt. 45, 4464–4479 (2006). [CrossRef] [PubMed]
  21. S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27, 184–189 (2003) (SICOT).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited