OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7176–7189

Hamiltonian optics formalism for microring resonator structures with varying ring resonances

Xiaolan Sun, Zhenshan Yang, Xiaohong Liu, Chao Li, Yanhua Dong, Libin Xie, and J. E. Sipe  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7176-7189 (2011)
http://dx.doi.org/10.1364/OE.19.007176


View Full Text Article

Enhanced HTML    Acrobat PDF (1095 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a Hamiltonian optics formalism to quantitatively analyze a recently proposed scheme for increasing the delay-time-bandwidth product for microring resonator structures with varying ring resonances [Yang and Sipe, Opt. Lett. 32, 918 (2007)]. This theory is formally compact, simple and physically intuitive. We compare this formalism with the more rigorous transfer matrix method, and conclude that the Hamiltonian optics formalism correctly gives the average dispersion, which essentially determines the group delay as well as the dispersive distortion for pulses in the ps regime or longer.

© 2011 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4740) Optics in computing : Optical processing
(210.0210) Optical data storage : Optical data storage

ToC Category:
Integrated Optics

History
Original Manuscript: December 20, 2010
Revised Manuscript: February 15, 2011
Manuscript Accepted: February 22, 2011
Published: March 30, 2011

Citation
Xiaolan Sun, Zhenshan Yang, Xiaohong Liu, Chao Li, Yanhua Dong, Libin Xie, and J. E. Sipe, "Hamiltonian optics formalism for microring resonator structures with varying ring resonances," Opt. Express 19, 7176-7189 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7176


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Chamorro-Posada, and F. J. Fraile-Pelaez, “Fast and slow light in zigzag microring resonator chains,” Opt. Lett. 34, 626–628 (2009). [CrossRef] [PubMed]
  2. C. Fietz, and G. Shvets, “Simultaneous fast and slow light in microring resonators,” Opt. Lett. 32, 3480–3482 (2007). [CrossRef] [PubMed]
  3. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007). [CrossRef]
  4. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004). [CrossRef] [PubMed]
  5. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optic,” J. Opt. Soc. Am. B 21, 1818–1832 (2004). [CrossRef]
  6. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001). [CrossRef]
  7. S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. H. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett. 31, 1985–1987 (2006). [CrossRef] [PubMed]
  8. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, “Stopping, storing, and releasing light in quantum-well Bragg structures,” J. Opt. Soc. Am. B 22, 2144–2156 (2005). [CrossRef]
  9. M. F. Yanik, and S. H. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004). [CrossRef] [PubMed]
  10. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, “Distortionless light pulse delay in quantum well Bragg structures,” Opt. Lett. 30, 2790–2792 (2005). [CrossRef] [PubMed]
  11. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009). [CrossRef] [PubMed]
  12. J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009). [CrossRef]
  13. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef] [PubMed]
  14. Z. S. Yang, and J. E. Sipe, “Increasing the delay-time-bandwidth product for micro-ring resonator structures by varying the optical ring resonances,” Opt. Lett. 32, 918–920 (2007). [CrossRef] [PubMed]
  15. N. H. Kwong, J. E. Sipe, R. Binder, Z. S. Yang, and A. L. Smirl, Stopping and Storing Light in Semiconductor Quantum Wells and Optical Resonators” in Slow Light: Science and Applications (Optical Science and Engineering), J. B. Khurgin and R. S. Tucker, eds. (CRC Press, 2009).
  16. J. A. Arnaud, Beam and Fiber Optics, (Academic, 1976).
  17. P. St. J. Russell, and T. A. Birks, “Hamiltonian optics of nonuniform photonic crystals,” J. Lightwave Technol. 17, 1982–1988 (1999). [CrossRef]
  18. C. M. de Sterke, J. N. Bright, P. A. Krug, and T. E. Hammon, “Observation of an optical Wannier–Stark ladder,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57, 2365–2370 (1998). [CrossRef]
  19. G. Malpuech, A. Kavokin, G. Panzarini, and A. Di Carlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001). [CrossRef]
  20. R. Sapienzav, P. Costantino, and D. Wiersma, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003). [CrossRef]
  21. P. Chak, and J. E. Sipe, “Minimizing finite-size effects in artificial resonance tunneling structures,” Opt. Lett. 31, 2568–2570 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited