OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7230–7243

A Monte Carlo study of the seagrass-induced depth bias in bathymetric lidar

Chi-Kuei Wang, William Philpot, Minsu Kim, and Hou-Meng Lei  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7230-7243 (2011)
http://dx.doi.org/10.1364/OE.19.007230


View Full Text Article

Enhanced HTML    Acrobat PDF (1396 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A bathymetric lidar survey is the most cost efficient method of producing bathymetric maps in near shore areas where the ocean bottom is both highly variable and of greatest importance for shipping and recreation. So far, not much attention has been paid to the influence of bottom materials on the lidar signals. This study addresses this issue using a Monte Carlo modeling technique. The Monte Carlo simulation includes a plane parallel water body and a flat bottom with or without seagrass. The seagrass canopy structure is adopted from Zimmerman (2003). Both the surface of the seagrass leaves and the bottom are assumed to be Lambertian. Convolution with the lidar pulse function followed by the median operator is used to reduce the variance of the resultant lidar waveform. Two seagrass orientation arrangements are modeled: seagrass in still water with random leaf orientation and seagrass with a uniform orientation as would be expected when under the influence of a water current. For each case, two maximum canopy heights, 0.5 m and 1 m, three shoot densities, 100, 500, and 1000, and three bending angles, 5, 25, and 45 degrees, are considered. The seagrass is found to induce a depth bias that is proportional to an effective leaf area index (eLAI) and the contrast in reflectance between the seagrass and the bottom material.

© 2011 OSA

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(280.1355) Remote sensing and sensors : Bathymetry

ToC Category:
Remote Sensing

History
Original Manuscript: January 25, 2011
Revised Manuscript: March 11, 2011
Manuscript Accepted: March 12, 2011
Published: March 31, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Chi-Kuei Wang, William Philpot, Minsu Kim, and Hou-Meng Lei, "A Monte Carlo study of the seagrass-induced depth bias in bathymetric lidar," Opt. Express 19, 7230-7243 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7230


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. C. Guenther, “Airborne lidar bathymetry,” in Digital Elevation Model Technologies and Applications: The DEM Users Manual, D. F. Maune, ed. (ASPRS, 2001)
  2. G. C. Guenther, A. G. Cunningham, P. E. LaRocque, and D. J. Reid, “Meeting the accuracy challenge in airborne lidar bathymetry,” EARSeL eProceedings (2001), Vol. 1, pp. 1–27.
  3. G. C. Guenther, R. W. L. Thomas, and P. E. LaRocque, “Design considerations for achieving high accuracy with the shoals bathymetric lidar system,” Proc. SPIE 2964, 54–71 (1996). [CrossRef]
  4. M. Lee, “Benthic mapping of coastal waters using data fusion of hyperspectral imagery and airborne laser bathymetry,” PhD dissertation (University of Florida, 2003).
  5. C.-K. Wang and W. D. Philpot, “Using airborne bathymetric lidar to detect bottom type variation in shallow waters,” Remote Sens. Environ. 106(1), 123–135 (2007). [CrossRef]
  6. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41(30), 6307–6324 (2002). [CrossRef] [PubMed]
  7. R. M. Measures, Laser Remote Sensing (Krieger, 1992)
  8. L. R. Bissonnette, “Multiple scattering of narrow light beams in aerosols,” Appl. Phys. B 60(4), 315–323 (1995). [CrossRef]
  9. C. Flesia and P. Schwendimann, “Analytical multiple-scattering extension of the Mie theory: the LIDAR equation,” Appl. Phys. B 60(4), 331–334 (1995). [CrossRef]
  10. A. V. Starkov, M. Noormohammadian, and U. G. Oppel, “A stochastic model and a variance-reduction Monte-Carlo method for the calculation of light transport,” Appl. Phys. B 60(4), 335–340 (1995). [CrossRef]
  11. E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Analytical solution to LIDAR return signals from clouds with regard to multiple scattering,” Appl. Phys. B 60(4), 345–353 (1995). [CrossRef]
  12. P. Bruscaglioni, A. Ismaelli, and G. Zaccanti, “Monte-Carlo calculations of LIDAR returns: procedures and results,” Appl. Phys. B 60(4), 325–329 (1995). [CrossRef]
  13. H. R. Gordon, “Interpretation of airborne oceanic lidar: effects of multiple scattering,” Appl. Opt. 21(16), 2996–3001 (1982). [CrossRef] [PubMed]
  14. G. W. Kattawar and G. N. Plass, “Time of flight lidar measurements as an ocean probe,” Appl. Opt. 11(3), 662–666 (1972). [CrossRef] [PubMed]
  15. L. R. Poole, “Radiative transfer model for airborne laser fluorosensors: inclusion of water Raman scattering,” Appl. Opt. 21(17), 3063–3065 (1982). [CrossRef] [PubMed]
  16. D. M. Winker and L. R. Poole, “Monte-Carlo calculations of cloud returns for ground-based and space based LIDARS,” Appl. Phys. B 60(4), 341–344 (1995). [CrossRef]
  17. J. Heslin, W. J. Lillycrop, and R. Pope, “CHARTS: an evolution in airborne lidar hydrography,” presented at U.S. Hydro Conference, Biloxi, Missippi, 24–27 March 2003.
  18. G. Cunningham, Marine Survey Division, Optech Inc., 100 Wildcat Road, Toronto, Ontario M3J 2Z9, Canada (personal communication, 2004).
  19. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  20. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov, The Monte Carlo Methods in Atmospheric Optics, (Springer-Verlag, 1980)
  21. T. J. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72–78 (Scripps Institution of Oceanography, 1972).
  22. R. Barbini, F. Colao, E. Cupini, N. Ferrari, G. Ferro, and A. Palucci, “Marine code for modelling range resolved oceanographic lidar fluorosensor measurements,” EARSeL eProceedings (2001), Vol. 1, pp. 77–87.
  23. R. C. Zimmerman, “A biooptical model of irradiance distribution and photosynthesis in seagrass canopies,” Limnol. Oceanogr. 48(1_part_2), 568–585 (2003). [CrossRef]
  24. R. Y. Rubinstein, Simulation and the Monte Carlo Method (Wiley, 1981)
  25. Y. M. Govaerts, S. Jacquemoud, M. M. Verstraete, and S. L. Ustin, “Three-dimensional radiation transfer modeling in a dicotyledon leaf,” Appl. Opt. 35(33), 6585–6598 (1996). [CrossRef] [PubMed]
  26. T. W. Brakke, J. A. Smith, and J. M. Harnden, “Bidirectional scattering of light from tree leaves,” Remote Sens. Environ. 29(2), 175–183 (1989). [CrossRef]
  27. R. Zanella, P. Boccacci, L. Zanni, and M. Bertero, “Efficient gradient projection methods for edge-preserving removal of Poisson noise,” Inverse Probl. 25(4), 045010 (2009), doi:. [CrossRef]
  28. E. J. Hochberg, M. J. Atkinson, and S. Andrefouet, “Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing,” Remote Sens. Environ. 85(2), 159–173 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited