OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7280–7288

Metamorphic In0.20Ga0.80As p-i-n photodetectors grown on GaAs substrates for near infrared applications

K. Swaminathan, L.-M. Yang, T. J. Grassman, G. Tabares, A. Guzman, A. Hierro, M. J. Mills, and S. A. Ringel  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7280-7288 (2011)
http://dx.doi.org/10.1364/OE.19.007280


View Full Text Article

Enhanced HTML    Acrobat PDF (1023 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The growth and performance of top-illuminated metamorphic In0.20Ga0.80As p-i-n photodetectors grown on GaAs substrates using a step-graded InxGa1-xAs buffer is reported. The p-i-n photodetectors display a low room-temperature reverse bias dark current density of ~1.4×10−7 A/cm2 at −2 V. Responsivity and specific detectivity values of 0.72 A/W, 2.3×1012 cm·Hz1/2/W and 0.69 A/W, 2.2×1012 cm·Hz1/2/W are achieved for Yb:YAG (1030 nm) and Nd:YAG (1064 nm) laser wavelengths at −2 V, respectively. A high theoretical bandwidth-responsivity product of 0.21 GHz·A/W was estimated at 1064 nm. Device performance metrics for these GaAs substrate-based detectors compare favorably with those based on InP technology due to the close tuning of the detector bandgap to the target wavelengths, despite the presence of a residual threading dislocation density. This work demonstrates the great potential for high performance metamorphic near-infrared InGaAs detectors with optimally tuned bandgaps, which can be grown on GaAs substrates, for a wide variety of applications.

© 2011 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(160.1890) Materials : Detector materials
(160.6000) Materials : Semiconductor materials
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Detectors

History
Original Manuscript: December 14, 2010
Revised Manuscript: January 24, 2011
Manuscript Accepted: January 25, 2011
Published: March 31, 2011

Citation
K. Swaminathan, L.-M. Yang, T. J. Grassman, G. Tabares, A. Guzman, A. Hierro, M. J. Mills, and S. A. Ringel, "Metamorphic In0.20Ga0.80As p-i-n photodetectors grown on GaAs substrates for near infrared applications," Opt. Express 19, 7280-7288 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7280


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991). [CrossRef] [PubMed]
  2. S. Donati, Photodetectors: Devices, Circuits and Applications (Prentice Hall, 2000), pp. 109–214.
  3. D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J. S. Harris, “Thick lattice-matched GaInNAs films in photodetector applications,” Proc. SPIE 5726, 27–34 (2005). [CrossRef]
  4. W. K. Loke, S. F. Yoon, K. H. Tan, S. Wicaksono, and W. J. Fan, “Improvement of GaInNAs p-i-n photodetector responsivity by antimony incorporation,” J. Appl. Phys. 101(3), 033122 (2007). [CrossRef]
  5. G. Lin, H. Kuo, C. Lin, and M. Feng, “Ultralow Leakage In0.53Ga0.47As p-i-n photodetector grown on linearly graded metamorphic InxGa1-xP buffered GaAs substrate,” IEEE J. Quantum Electron. 41(6), 749–752 (2005). [CrossRef]
  6. S. Sinharoy, M. Patton, T. Valko, and V. Weizer, “Progress in the development of metamorphic multi-junction III–V space solar cells,” Prog. Photovolt. Res. Appl. 10(6), 427–432 (2002). [CrossRef]
  7. D. Pal, E. Gombia, R. Mosca, A. Bosacchi, and S. Franchi, “Deep levels in virtually unstrained InGaAs layers deposited on GaAs,” J. Appl. Phys. 84(5), 2965–2967 (1998). [CrossRef]
  8. S. P. Ahrenkiel, M. W. Wanlass, J. J. Carapella, R. K. Ahrenkiel, S. W. Johnston, and L. M. Gedvilas, “Optimization of buffer layers for lattice-mismatched epitaxy of GaxIn1−xAs/InAsyP1−y double-heterostructures on InP,” Sol. Energy Mater. Sol. Cells 91(10), 908–918 (2007). [CrossRef]
  9. E. A. Fitzgerald, A. Y. Kim, M. T. Currie, T. A. Langdo, G. Taraschi, and M. T. Bulsara, “Dislocation dynamics in relaxed graded composition semiconductors,” Mat. Sci. Eng. B-Solid 67(1-2), 53–61 (1999). [CrossRef]
  10. D. B. Jackrel, “InGaAs and GaInNAs(Sb) 1064 nm photodetectors and solar cells on GaAs substrates,” Doctoral dissertation (Dept. of Materials Science and Engineering, Stanford University, 2005), pp. 127–150.
  11. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2007), Chap.13.
  12. Hamamatsu Photonics, “InGaAs p-i-n photodiode G8941 series data sheet,” http://sales.hamamatsu.com/assets/pdf/parts_G/G8941_series.pdf .
  13. Pacific Silicon sensor, “1064 nm enhanced silicon quadrant photodiode (Series Q) data sheet,” http://www.pacific-sensor.com/pages/sp_sq.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited