OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7373–7380

Passband modes beyond waveguide cutoff in metallic tilted-woodpile photonic crystals

Po Sun and John D. Williams  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7373-7380 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (936 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The infrared propagation character of metallic woodpile photonic crystals made of gold in the <110> direction was studied. The bandgap in metallic woodpile was found to be interrupted by a new propagating mode far beyond the waveguide cutoff. This new passband cannot be explained by the defect mode of the photonic crystal or the waveguide theorem. However, studies of surface plasmons within the structure showed that 3-D metallic photonic crystals can expand the propagating mode far beyond waveguide cutoff. This passband mode can be adjusted by design allowing for new optical filtering devices using 3-D photonic crystals. Finite-difference-time-domain (FDTD) simulations were applied to explain this phenomenon and matched well with experimental results.

© 2011 OSA

OCIS Codes
(160.3900) Materials : Metals
(240.6680) Optics at surfaces : Surface plasmons
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: February 15, 2011
Revised Manuscript: March 21, 2011
Manuscript Accepted: March 25, 2011
Published: April 1, 2011

Po Sun and John D. Williams, "Passband modes beyond waveguide cutoff in metallic tilted-woodpile photonic crystals," Opt. Express 19, 7373-7380 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  3. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994). [CrossRef]
  4. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998). [CrossRef]
  5. A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter 11(4), 997–1008 (1999). [CrossRef]
  6. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002). [CrossRef] [PubMed]
  7. Z. Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003). [CrossRef]
  8. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003). [CrossRef]
  9. S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006). [CrossRef]
  10. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000). [CrossRef] [PubMed]
  11. J. F. Chen, R. T. Hong, and J.-Y. Yang, “Analysis of planar defect structures in three-dimensional layer-by-layer photonic crystals,” J. Appl. Phys. 104(6), 063111 (2008). [CrossRef]
  12. A. S. P. Chang, Y.-S. Kim, M. Chen, Z.-P. Yang, J. A. Bur, S.-Y. Lin, and K.-M. Ho, “Visible three-dimensional metallic photonic crystal with non-localized propagating modes beyond waveguide cutoff,” Opt. Express 15(13), 8428–8437 (2007). [CrossRef] [PubMed]
  13. O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90(23), 233901 (2003). [CrossRef] [PubMed]
  14. O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036605 (2005). [CrossRef] [PubMed]
  15. J. D. Williams, C. Arrington, W. C. Sweatt, D. W. Peters, I. El-Kady, A. R. Ellis, J. Verley, and F. B. McCormick, “Tilted Logpile photonic crystals using the LIGA technique,” Proc. SPIE 6289, 62890A (2006). [CrossRef]
  16. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009). [CrossRef] [PubMed]
  17. H. Y. Sang, Z. Y. Li, and B.-Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004). [CrossRef]
  18. H.-Y. Sang, Z.-Y. Li, and B.-Y. Gu, “Photonic states deep into the waveguide cutoff frequency of metallic mesh photonic crystal filters,” J. Appl. Phys. 97(3), 033102 (2005). [CrossRef]
  19. J. D. Williams and W. Sweatt, “Method to Fabricate a Tilted Logpile Photonic Crystal,” US Patent No. US 7,820,365 B1 (2010).
  20. J. D. Williams, P. Sun, W. C. Sweatt, and A. R. Ellis, “Metallic-tilted woodpile photonic crystals in the midinfrared,” J. Micro/Nanolith. MEMS MOEMS 9(2), 023011 (2010). [CrossRef]
  21. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]
  22. M. N. O. Sadiku, Elements of Electromagnetics, 3rd ed. (Oxford University Press, 2001), pp. 554.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited