OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7468–7479

Adjustable hybrid diffractive/refractive achromatic lens

Pouria Valley, Nickolaos Savidis, Jim Schwiegerling, Mohammad Reza Dodge, Gholam Peyman, and N. Peyghambarian  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7468-7479 (2011)
http://dx.doi.org/10.1364/OE.19.007468


View Full Text Article

Enhanced HTML    Acrobat PDF (1104 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a variable focal length achromatic lens that consists of a flat liquid crystal diffractive lens and a pressure-controlled fluidic refractive lens. The diffractive lens is composed of a flat binary Fresnel zone structure and a thin liquid crystal layer, producing high efficiency and millisecond switching times while applying a low ac voltage input. The focusing power of the diffractive lens is adjusted by electrically modifying the sub-zones and re-establishing phase wrapping points. The refractive lens includes a fluid chamber with a flat glass surface and an opposing elastic polydimethylsiloxane (PDMS) membrane surface. Inserting fluid volume through a pump system into the clear aperture region alters the membrane curvature and adjusts the refractive lens’ focal position. Primary chromatic aberration is remarkably reduced through the coupling of the fluidic and diffractive lenses at selected focal lengths. Potential applications include miniature color imaging systems, medical and ophthalmic devices, or any design that utilizes variable focal length achromats.

© 2011 OSA

OCIS Codes
(080.3630) Geometric optics : Lenses
(230.3720) Optical devices : Liquid-crystal devices
(050.1965) Diffraction and gratings : Diffractive lenses

ToC Category:
Optical Devices

History
Original Manuscript: January 7, 2011
Revised Manuscript: March 4, 2011
Manuscript Accepted: March 18, 2011
Published: April 4, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Pouria Valley, Nickolaos Savidis, Jim Schwiegerling, Mohammad Reza Dodge, Gholam Peyman, and N. Peyghambarian, "Adjustable hybrid diffractive/refractive achromatic lens," Opt. Express 19, 7468-7479 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7468


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE Press Book, 2004).
  2. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett. 35(3), 336–338 (2010). [CrossRef] [PubMed]
  3. P. Valley, M. Reza Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35(15), 2582–2584 (2010). [CrossRef] [PubMed]
  4. S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal fresnel lens,” Jpn. J. Appl. Phys. 24(Part 2, No. 8), L626–L628 (1985). [CrossRef]
  5. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003). [CrossRef]
  6. B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martinez, S. R. Restaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908, 628908-12 (2006). [CrossRef]
  7. H. C. Lin and Y. H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett. 98(8), 083503 (2011). [CrossRef]
  8. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006). [CrossRef] [PubMed]
  9. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004). [CrossRef]
  10. D. Y. Zhang, N. Justis, and Y. H. Lo, “Integrated fluidic adaptive zoom lens,” Opt. Lett. 29(24), 2855–2857 (2004). [CrossRef]
  11. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006). [CrossRef] [PubMed]
  12. R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling, and N. Peyghambarian, “Adjustable fluidic lenses for ophthalmic corrections,” Opt. Lett. 34(4), 515–517 (2009). [CrossRef] [PubMed]
  13. T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27(14), 2960–2971 (1988). [CrossRef] [PubMed]
  14. G. Zhou, H. M. Leung, H. Yu, A. S. Kumar, and F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34(18), 2793–2795 (2009). [CrossRef] [PubMed]
  15. J. E. Greivenkamp, Field guide to geometrical optics (SPIE Press, 2004).
  16. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007). [CrossRef] [PubMed]
  17. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43(1), 11–19 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 4 Fig. 2
 
Fig. 3 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited