OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7480–7490

Optical phase-space-time-frequency tomography

Paul Rojas, Rachel Blaser, Yong Meng Sua, and Kim Fook Lee  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7480-7490 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new approach for constructing optical phase-space-time-frequency tomography (OPSTFT) of an optical wave field. This tomography can be measured by using a novel four-window optical imaging system based on two local oscillator fields balanced heterodyne detection. The OPSTFT is a Wigner distribution function of two independent Fourier Transform pairs, i.e., phase-space and time-frequency. From its theoretical and experimental aspects, it can provide information of position, momentum, time and frequency of a spatial light field with precision beyond the uncertainty principle. Besides the distributions of xp and tω, the OPSTFT can provide four other distributions such as xt, pt, xω and pω. We simulate the OPSTFT for a light field obscured by a wire and a single-line absorption filter. We believe that the four-window system can provide spatial and temporal properties of a wave field for quantum image processing and biophotonics.

© 2011 OSA

OCIS Codes
(110.6960) Imaging systems : Tomography
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: January 27, 2011
Revised Manuscript: March 15, 2011
Manuscript Accepted: March 19, 2011
Published: April 4, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Paul Rojas, Rachel Blaser, Yong Meng Sua, and Kim Fook Lee, "Optical phase-space-time-frequency tomography," Opt. Express 19, 7480-7490 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. F. Lee, F. Reil, S. Bali, A. Wax, and J. E. Thomas, “Heterodyne measurement of Wigner distributions for classical optical fields,” Opt. Lett. 24, 1370–1372 (1999). [CrossRef]
  2. V. Bollen, Y. M. Sua, and K. F. Lee, “Direct measurement of the Kirkwood-Rihaczek distribution for the spatial properties of a coherent light beam,” Phys. Rev. A 81, 063826 (2010). [CrossRef]
  3. F. Reil and J. E. Thomas, “Observation of phase conjugation of light arising from enhanced backscattering in a random medium,” Phys. Rev. Lett. 95, 143903 (2005). [CrossRef] [PubMed]
  4. E. P. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  5. M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, “Distribution functions in physics: fundamentals,” Phys. Rep. 106, 121–167 (1984). [CrossRef]
  6. Ch. Kurtsiefer, T. Pfau, and J. Mlynek, “Measurement of the Wigner function of an ensemble of Helium atoms,” Nature 386, 150–153 (1997). [CrossRef]
  7. D. Leibfried, T. Pfau, and C. Monroe, “Shadows and mirrors: reconstructing quantum states of atom motion,” Phys. Today 51(4), 22–28 (April1998). [CrossRef]
  8. K. Wodkiewicz and G. H. Herling, “Classical and non-classical interference,” Phys. Rev. A 57, 815–821 (1998).
  9. K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Phys. Rev. A 40, 2847–2849 (1989). [CrossRef] [PubMed]
  10. J. Bertrand and P. Bertrand, “A tomographic approach to Wigner function,” Found. Phys. 17, 397–405 (1987). [CrossRef]
  11. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993). [CrossRef] [PubMed]
  12. A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009). [CrossRef]
  13. M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994). [CrossRef] [PubMed]
  14. D. F. McAlister, M. Beck, L. Clarke, A. Meyer, and M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995). [CrossRef] [PubMed]
  15. M. Beck, M. G. Raymer, I. A. Walmsley, and V. Wong, “Chronocyclic tomography for measuring the amplitude and phase structure of optical pulses,” Opt. Lett. 18, 2041–2043 (1993). [CrossRef] [PubMed]
  16. B. J. Smith, B. Killett, M. G. Raymer, I. A. Walmsley, and K. Banaszek, “Measurement of the transverse spatial quantum state of light at the single-photon level,” Opt. Lett. 30, 3365–3367 (2005). [CrossRef]
  17. K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321, 541–543 (2008). [CrossRef] [PubMed]
  18. M. I. Kolobiv, Quantum Imaging , 1st ed. (Springer, 2006).
  19. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321, 544–547 (2008). [CrossRef] [PubMed]
  20. M. I. Kolobov, “The spatial behavior of nonclassical light,” Rev. Mod. Phys. 71, 1539–1589 (1999). [CrossRef]
  21. W. H. Zurek, “Sub-Planck structure in phase space and its relevance for quantum decoherence,” Nature 412, 712–717 (2001). [CrossRef] [PubMed]
  22. F. Toscano, D. A. R. Dalvit, L. Davidovich, and W. H. Zurek, “Sub-Planck phase-space structures and Heisenberg-limited measurements,” Phys. Rev. A 73, 023803 (2006). [CrossRef]
  23. S. John, G. Pang, and Y. Yang, “Optical Coherence Propagation and Imaging in a Multiple Scattering Medium,” J. Biomed. Opt. 1, 180–191 (1996). [CrossRef]
  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vols. I and II.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited