OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7567–7579

Speckle-free and grayscale hologram reconstruction using time-multiplexing technique

Yasuhiro Takaki and Masahito Yokouchi  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7567-7579 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Speckle generation is an inherent problem of holography. A speckle-reduction technique employing a time-multiplexing method is proposed. Object points constituting a reconstructed image are divided into multiple object point groups consisting of sparse object points, and the object point groups are displayed time sequentially. The sparseness and temporal summation enable the suppression of speckle generation. The object point group is decomposed into multiple bit planes to represent the grayscale of object points, and binary holograms are generated from the bit plane patterns by using a half-zone plate technique. The binary holograms are displayed by a high-speed spatial light modulator.

© 2011 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(090.2870) Holography : Holographic display
(120.2040) Instrumentation, measurement, and metrology : Displays

ToC Category:

Original Manuscript: January 21, 2011
Revised Manuscript: March 4, 2011
Manuscript Accepted: March 21, 2011
Published: April 5, 2011

Yasuhiro Takaki and Masahito Yokouchi, "Speckle-free and grayscale hologram reconstruction using time-multiplexing technique," Opt. Express 19, 7567-7579 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, “Microscopy by recorded wavefronts,” Proc. R. Soc. Lond. 197(1051), 454–487 (1949). [CrossRef]
  2. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52(10), 1123–1130 (1962). [CrossRef]
  3. L. I. Goldfischer, “Autocorrelation function and power spectral density of laser-produced speckle patterns,” J. Opt. Soc. Am. 55(3), 247–252 (1965). [CrossRef]
  4. H. J. Gerritsen, W. J. Hannan, and E. G. Ramberg, “Elimination of speckle noise in holograms with redundancy,” Appl. Opt. 7(11), 2301–2311 (1968). [CrossRef] [PubMed]
  5. T. S. McKechnie, “Speckle reduction,” in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1975).
  6. M. Matsumura, “Speckle noise reduction by random phase shifters,” Appl. Opt. 14(3), 660–665 (1975). [CrossRef] [PubMed]
  7. J. M. Huntley and L. Benckert, “Speckle interferometry: noise reduction by correlation fringe averaging,” Appl. Opt. 31(14), 2412–2414 (1992). [CrossRef] [PubMed]
  8. M. Yamaguchi, H. Endoh, T. Honda, and N. Ohyama, “High-quality recording of a full-parallax holographic sterogram with a digital diffuser,” Opt. Lett. 19(2), 135–137 (1994). [CrossRef] [PubMed]
  9. J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34(17), 3165–3171 (1995). [CrossRef] [PubMed]
  10. F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt. 48(34), H48–H53 (2009). [CrossRef] [PubMed]
  11. F. Wyrowski and O. Bryngdahl, “Speckle-free reconstruction in digital holography,” J. Opt. Soc. Am. A 6(8), 1171–1174 (1989). [CrossRef]
  12. M. Lucente, and T. A. Galyean, “Rendering interactive holographic images,” in Proceedings of SIGGRAPH’95 (Los Angeles, California, 1995), pp. 387–394.
  13. K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996). [CrossRef]
  14. M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. G. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100-megapixel computer-generated holographic images from Active Tiling: a dynamic and scalable electro-optic modulator system,” SPIE 5005, 247–258 (2003). [CrossRef]
  15. A. Schwerdtner, N. Leister, and R. Häussler, “A New Approach to Electro-Holography for TV and Projection Displays”, in SID 2007 International Symposium, Digest of Technical Papers, 1224 – 1227 (2007).
  16. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2009). [CrossRef]
  17. Y. Takaki and N. Okada, “Hologram generation by horizontal scanning of a high-speed spatial light modulator,” Appl. Opt. 48(17), 3255 (2009). [CrossRef] [PubMed]
  18. Y. Takaki and Y. Tanemoto, “Modified resolution redistribution system for frameless hologram display module,” Opt. Express 18(10), 10294–10300 (2010). [CrossRef] [PubMed]
  19. M. Clark, “Two-dimensional, three-dimensional, and gray-scale images reconstructed from computer-generated holograms designed by use of a direct-search method,” Appl. Opt. 38(25), 5331–5337 (1999). [CrossRef]
  20. Y. Takaki, M. Yokouchi, and N. Okada, “Improvement of grayscale representation of the horizontally scanning holographic display,” Opt. Express 18(24), 24926–24936 (2010). [CrossRef] [PubMed]
  21. O. Bryngdahl and A. Lohmann, “Single-Sideband Holography,” J. Opt. Soc. Am. 58(5), 620–624 (1968). [CrossRef]
  22. T. Mishina, F. Okano, and I. Yuyama, “Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones,” Appl. Opt. 38(17), 3703–3713 (1999). [CrossRef]
  23. Y. Takaki and Y. Tanemoto, “Band-limited zone plates for single-sideband holography,” Appl. Opt. 48(34), H64–H70 (2009). [CrossRef] [PubMed]
  24. J.-A. Sun and A. Cai, “Archaic focusing properties of Fresnel zone plates,” J. Opt. Soc. Am. A 8(1), 33–35 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited