OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7587–7595

Single-shot Full-field reflection phase microscopy

Zahid Yaqoob, Toyohiko Yamauchi, Wonshik Choi, Dan Fu, Ramachandra R. Dasari, and Michael S. Feld  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7587-7595 (2011)
http://dx.doi.org/10.1364/OE.19.007587


View Full Text Article

Enhanced HTML    Acrobat PDF (1325 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a full-field reflection phase microscope that combines low-coherence interferometry and off-axis digital holographic microscopy (DHM). The reflection-based DHM provides highly sensitive and a single-shot imaging of cellular dynamics while the use of low coherence source provides a depth-selective measurement. The setup uniquely uses a diffraction grating in the reference arm to generate an interference image of uniform contrast over the entire field-of-view albeit low-coherence light source. We have measured the path-length sensitivity of our instrument to be approximately 21 ‚ÄČ p i c o m e t e r s / H z that makes it suitable for nanometer-scale full-field measurement of membrane dynamics in live cells.

© 2011 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1530) Medical optics and biotechnology : Cell analysis
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 7, 2011
Revised Manuscript: March 17, 2011
Manuscript Accepted: March 18, 2011
Published: April 5, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Zahid Yaqoob, Toyohiko Yamauchi, Wonshik Choi, Dan Fu, Ramachandra R. Dasari, and Michael S. Feld, "Single-shot Full-field reflection phase microscopy," Opt. Express 19, 7587-7595 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7587


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006). [CrossRef] [PubMed]
  2. M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003). [CrossRef] [PubMed]
  3. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008). [CrossRef] [PubMed]
  4. N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, and R. Lal, “Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties,” Biophys. J. 86(3), 1753–1762 (2004). [CrossRef] [PubMed]
  5. J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, “Microrheology of human lung epithelial cells measured by atomic force microscopy,” Biophys. J. 84(3), 2071–2079 (2003). [CrossRef] [PubMed]
  6. M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007). [CrossRef] [PubMed]
  7. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994). [CrossRef] [PubMed]
  8. E. Evans and A. Leung, “Adhesivity and rigidity of erythrocyte membrane in relation to wheat germ agglutinin binding,” J. Cell Biol. 98(4), 1201–1208 (1984). [CrossRef] [PubMed]
  9. R. P. Hebbel, A. Leung, and N. Mohandas, “Oxidation-induced changes in microrheologic properties of the red blood cell membrane,” Blood 76(5), 1015–1020 (1990). [PubMed]
  10. K. G. Engstrom, B. Moller, and H. J. Meiselman, “Optical Evaluation of Red Blood Cell Geometry Using Micropipette aspiration,” Blood Cells 18(2), 241–257, discussion 258–265 (1992). [PubMed]
  11. H. Engelhardt, H. Gaub, and E. Sackmann, “Viscoelastic properties of Erythrocyte Membranes in High-Frequency Electric Fields,” Nature 307(5949), 378–380 (1984). [CrossRef] [PubMed]
  12. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef] [PubMed]
  13. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010). [CrossRef] [PubMed]
  14. R. Wang, H. Ding, M. Mir, K. Tangella, and G. Popescu, “Effective 3D viscoelasticity of red blood cells measured by diffraction phase microscopy,” Biomed. Opt. Express 2(3), 485–490 (2011). [CrossRef] [PubMed]
  15. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  16. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  17. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006). [CrossRef] [PubMed]
  18. T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16(16), 12227–12238 (2008). [CrossRef] [PubMed]
  19. Z. Yaqoob, W. Choi, S. Oh, N. Lue, Y. Park, C. Fang-Yen, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing,” Opt. Express 17(13), 10681–10687 (2009). [CrossRef] [PubMed]
  20. A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, “Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy,” Opt. Express 15(13), 8115–8124 (2007). [CrossRef] [PubMed]
  21. P. Massatsch, F. Charriere, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005). [CrossRef] [PubMed]
  22. H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29(20), 2399–2401 (2004). [CrossRef] [PubMed]
  23. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005). [CrossRef] [PubMed]
  24. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007). [CrossRef] [PubMed]
  25. J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981). [CrossRef] [PubMed]
  26. P. C. Zhang, A. M. Keleshian, and F. Sachs, “Voltage-induced membrane movement,” Nature 413(6854), 428–432 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited