OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7603–7615

Ultra-slim plastic endomicroscope objective for non-linear microscopy

Matthew Kyrish, Urs Utzinger, Michael R. Descour, Brenda K. Baggett, and Tomasz S. Tkaczyk  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7603-7615 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2053 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Non-linear microscopy has the potential to provide clinically useful information on the structure of biological tissue in vivo via an endomicroscope. The ability to use plastic as the optical material in a multiphoton objective was evaluated based on several criteria including autofluorescence, injection molding induced birefringence, and pulse broadening due to group velocity dispersion. An all-plastic, refractive ultra-slim endoscope objective was built with design specifications of NA = 0.4, FOV = 250 μm, 1.27 mm outer diameter, and 0.8 mm clear aperture. Initial images of second-harmonic generation signal (illumination at 780 nm) in collagen fibers and two-photon excited fluorescence (illumination at 920 nm) of Convallaria rhizome are reported.

© 2011 OSA

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(350.3950) Other areas of optics : Micro-optics
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: February 17, 2011
Revised Manuscript: March 28, 2011
Manuscript Accepted: March 29, 2011
Published: April 5, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Matthew Kyrish, Urs Utzinger, Michael R. Descour, Brenda K. Baggett, and Tomasz S. Tkaczyk, "Ultra-slim plastic endomicroscope objective for non-linear microscopy," Opt. Express 19, 7603-7615 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Mukherjee, J. S. Wysock, C. K. Ng, M. Akhtar, S. Perner, M. M. Lee, M. A. Rubin, F. R. Maxfield, W. W. Webb, and D. S. Scherr, “Human bladder cancer diagnosis using multiphoton microscopy,” in Photonic Therapeutics and Diagnostics V, N. Kollias, ed. (SPIE, 2009).
  2. M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Annalen der Physik 401(3), 273–294 (1931). [CrossRef]
  3. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  4. P. Cheng and C. K. Sun, “Nonlinear (harmonic generation) optical microscopy,” in Handbook of Confocal Microscopy, J. Pawley, ed., (Springer, 2006).
  5. L. Gao, L. Jin, P. Xue, J. Xu, Y. Wang, H. Ma, and D. Chen, “Reconstruction of complementary images in second harmonic generation microscopy,” Opt. Express 14(11), 4727–4735 (2006). [CrossRef] [PubMed]
  6. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Multiphoton microscopy in biological research,” Curr. Opin. Chem. Biol. 5(5), 603–608 (2001). [CrossRef] [PubMed]
  7. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001). [CrossRef] [PubMed]
  8. D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28(17), 1552–1554 (2003). [CrossRef] [PubMed]
  9. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express 14(3), 1027–1032 (2006). [CrossRef] [PubMed]
  10. R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express 16(25), 20588–20596 (2008). [CrossRef] [PubMed]
  11. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007). [CrossRef] [PubMed]
  12. S. Schenkl, A. Ehlers, R. LeHarzic, M. Stark, I. Riemann, B. Messerschmidt, M. Kaatz, and K. König, “Rigid and high NA multiphoton fluorescence GRIN-endoscopes,” in Novel Optical Instrumentation for Biomedical Applications III, C. D. Depeursinge, ed. (SPIE, 2007).
  13. J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008). [CrossRef]
  14. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003). [CrossRef] [PubMed]
  15. W. Göbel, J. N. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004). [CrossRef] [PubMed]
  16. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008). [CrossRef] [PubMed]
  17. P. Singh, A. Chak, J. E. Willis, A. Rollins, and M. V. Sivak, “In vivo optical coherence tomography imaging of the pancreatic and biliary ductal system,” Gastrointest. Endosc. 62(6), 970–974 (2005). [CrossRef] [PubMed]
  18. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007). [CrossRef] [PubMed]
  19. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006). [CrossRef] [PubMed]
  20. X. Li and W. Yu, “Deep tissue microscopic imaging of the kidney with a gradient-index lens system,” Opt. Commun. 281(7), 1833–1840 (2008). [CrossRef] [PubMed]
  21. M. Mansuripur, Classical Optics and its Applications, 2nd ed. (Cambridge University Press, 2009).
  22. Y. Zhao, H. Nakamura, and R. J. Gordon, “Development of a versatile two-photon endoscope for biological imaging,” Biomed. Opt. Express 1(4), 1159–1172 (2010). [CrossRef]
  23. GRINTECH, http://www.grintech.de/grin-lens-systems-for-medical-applications.html
  24. R. T. Kester, S. E. Weigum, M. C. Pierce, R. Richards-Kortum, and T. S. Tkaczyk, “Low-cost miniature optics for point-of-care diagnostic instrumentation,” Lab Chip (submitted for publication).
  25. S. M. Landau, C. Liang, R. T. Kester, T. S. Tkaczyk, and M. R. Descour, “Design and evaluation of an ultra-slim objective for in-vivo deep optical biopsy,” Opt. Express 18(5), 4758–4775 (2010). [CrossRef] [PubMed]
  26. R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15(5), 2409–2420 (2007). [CrossRef] [PubMed]
  27. R. T. Kester, T. Christenson, R. R. Kortum, and T. S. Tkaczyk, “Low cost, high performance, self-aligning miniature optical systems,” Appl. Opt. 48(18), 3375–3384 (2009). [CrossRef] [PubMed]
  28. Y. Wu and X. Li, “Combined influences of chromatic aberration and scattering in depth-resolved two-photon fluorescence endospectroscopy,” Biomed. Opt. Express 1(4), 1234–1243 (2010). [CrossRef]
  29. S. Bäumer, ed., Handbook of Plastic Optics (Wiley-VCH, 2010).
  30. M. Bass, ed., Handbook of Optics, Volume 2: Devices, Measurements, and Properties (McGraw-Hill, Inc., 1995).
  31. M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001). [CrossRef] [PubMed]
  32. Y. Konishi, T. Sawaguchi, K. Kubomura, and K. Minami, “High performance cyclo clefin polymer ZEONEX®,” Proc. SPIE , 5872 (2005).
  33. M. D. Ries, E. Young, L. Al-Marashi, P. Goldstein, A. Hetherington, T. Petrie, and L. Pruitt, “In vivo behavior of acrylic bone cement in total hip arthroplasty,” Biomater. 27(2), 256–261 (2006). [CrossRef]
  34. M. Petrtyl, Z. Bastl, Z. Krulis, H. Hulejova, M. Polanska, J. Lisal, J. Danesova, and P. Cerny, “Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists with the Creation of New Articular Cartilage,” Macromol. Symp. 294(1), 120–132 (2010). [CrossRef]
  35. V. Tangpasuthadol, S. M. Pendharkar, R. C. Peterson, and J. Kohn, “Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices,” Biomaterials 21(23), 2379–2387 (2000). [CrossRef] [PubMed]
  36. L. Tabet, C. Bussy, A. Setyan, A. Simon-Deckers, M. J. Rossi, J. Boczkowski, and S. Lanone, “Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity,” Part. Fibre Toxicol. 8(3), 3 (2011). [CrossRef] [PubMed]
  37. M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Opt. 45(11), 2545–2554 (2006). [CrossRef] [PubMed]
  38. K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE , 6671 (2007).
  39. J. C. Diels and R. Wolfgang, Ultrashort Laser Pulse Phenomena (Elsevier, 2006).
  40. R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997). [CrossRef]
  41. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007). [CrossRef]
  42. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  43. K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003). [PubMed]
  44. ZEMAX Development Corporation, http://www.zemax.com .
  45. A. Tzannes and J. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808–1817 (1995). [CrossRef]
  46. ISO, ISO 12233:2000 Photography–Electronic still-picture cameras–Resolution Measurements (Geneva, Switzerland, 2000).
  47. J. Jung, H. Park, J. Park, and H. Kim, “Accuracy of preoperative ultrasound and ultrasound-guided fine needle aspiration cytology for axillary staging in breast cancer,” ANZ J. Surg. 80(4), 271–275 (2010). [CrossRef] [PubMed]
  48. S. Taneja, A. Jena, K. Kumar, and A. Mehta, “Technical Note: MRI-guided breast biopsy - our preliminary experience,” Indian J Radiol Imaging 20(3), 218–220 (2010). [CrossRef] [PubMed]
  49. J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited