OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7673–7679

Large refractive index changes of a chemically amplified photoresist in femtosecond laser nonlinear lithography

Mizue Mizoshiri, Yoshinori Hirata, Junji Nishii, and Hiroaki Nishiyama  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7673-7679 (2011)
http://dx.doi.org/10.1364/OE.19.007673


View Full Text Article

Enhanced HTML    Acrobat PDF (881 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We found that marked increases in refractive index of chemically amplified photoresists induced by highly repetitive femtosecond laser irradiation without post-exposure baking treatment. For laser writing speed less than 30 μm/s, the refractive index change of the nonlinear absorption region was as large as 8 × 10−3. Moreover, cross-linking reactions of the resists were induced. The refractive index changes can generate optical confinement and subsequent channel propagations of femtosecond laser pulses. The coupling efficiency was estimated as high as 87% using a low numerical aperture objective lens. The peak intensities of the guiding modes exceeded the polymerization threshold of the resist.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 1, 2011
Revised Manuscript: March 29, 2011
Manuscript Accepted: March 31, 2011
Published: April 6, 2011

Citation
Mizue Mizoshiri, Yoshinori Hirata, Junji Nishii, and Hiroaki Nishiyama, "Large refractive index changes of a chemically amplified photoresist in femtosecond laser nonlinear lithography," Opt. Express 19, 7673-7679 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7673


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral photonic crystal structures recorded by femtosecond laser pulses,” J. Non-Cryst. Solids 352(23-25), 2390–2394 (2006). [CrossRef]
  2. N. Grossman, A. Ovsianikov, A. Petrov, M. Eich, and B. Chichkov, “Investigation of optical properties of circular spiral photonic crystals,” Opt. Express 15(20), 13236–13243 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-20-13236 . [CrossRef] [PubMed]
  3. S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006). [CrossRef]
  4. J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005). [CrossRef]
  5. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  6. H. Nishiyama, M. Mizoshiri, T. Kawahara, J. Nishii, and Y. Hirata, “SiO2-based nonplanar structures fabricated using femtosecond laser lithography,” Opt. Express 16(22), 17288–17294 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17288 . [CrossRef] [PubMed]
  7. H. Nishiyama, J. Nishii, M. Mizoshiri, and Y. Hirata, “Microlens arrays of high-refractive-index glass fabricated by femtosecond laser lithography,” Appl. Surf. Sci. 255(24), 9750–9753 (2009). [CrossRef]
  8. M. Mizoshiri, H. Nishiyama, J. Nishii, and Y. Hirata, “Three-dimensional SiO2 surface structures fabricated using femtosecond laser lithography,” Appl. Phys., A Mater. Sci. Process. 98(1), 171–177 (2010). [CrossRef]
  9. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006), http://www.opticsinfobase.org/abstract.cfm?&id=90286 . [CrossRef] [PubMed]
  10. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003). [CrossRef]
  11. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-13-9443 . [CrossRef] [PubMed]
  12. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008). [CrossRef]
  13. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006). [CrossRef]
  14. J. H. Harris, R. Shubert, and J. N. Polky, “Beam Coupling to Films,” J. Opt. Soc. A 60(8), 1007–1016 (1970). [CrossRef]
  15. Optical integrated circuits, edited by H. Nishihara, M. Haruna, T. Suhara, (Ohmsha Ltd., Tokyo, Japan, 1985).
  16. S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of thin SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008). [CrossRef]
  17. Introduction and application of optical coupling systems to optical devices, edited by K. Kawano, (Gendai-kogakusha, Tokyo, Japan, 1991).
  18. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21(1), 24–26 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited