OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7680–7688

Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode

Raktim Dasgupta, Sunita Ahlawat, Ravi Shankar Verma, and Pradeep Kumar Gupta  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7680-7688 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the use of Laguerre-Gaussian (LG) modes for controlled orientation and rotation of optically trapped red blood cells (RBCs). For LG modes with increasing topological charge the resulting increase in size of the intensity annulas led to trapping of the cells at larger tilt angle with respect to the beam axis and thus provided additional control on the stable orientation of the cells under trap. Further, the RBCs could also be driven as micro-rotors by a transfer of orbital angular momentum from the LG trapping beam having large topological charge or by rotating the profile of LG mode having fractional topological charge.

© 2011 OSA

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: February 3, 2011
Revised Manuscript: March 28, 2011
Manuscript Accepted: March 31, 2011
Published: April 6, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Raktim Dasgupta, Sunita Ahlawat, Ravi Shankar Verma, and Pradeep Kumar Gupta, "Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode," Opt. Express 19, 7680-7688 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  2. D. V. Petrov, “Raman spectroscopy of optically trapped particles,” J. Opt. A, Pure Appl. Opt. 9(8), S139–S156 (2007). [CrossRef]
  3. S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009). [CrossRef]
  4. S. Rao, Š. Bálint, L. del Carmen Frias, and D. Petrov, “Polarization Raman study of protein ordering by controllable RBC deformation,” J. Raman 40(9), 1257–1261 (2009). [CrossRef]
  5. M. F. Perutz, “Submicroscopic structure of the red cell,” Nature 161(4084), 204–205 (1948). [CrossRef] [PubMed]
  6. K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” JBO Lett. 12, 060606 (2007).
  7. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express 7(13), 533–539 (2000). [CrossRef] [PubMed]
  8. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
  9. G. Garab, P. Galajda, I. Pomozi, L. Finzi, T. Praznovszky, P. Ormos, and H. van Amerongen, “Alignment of biological microparticles by a polarized laser beam,” Eur. Biophys. J. 34(4), 335–343 (2005). [CrossRef] [PubMed]
  10. S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991). [CrossRef]
  11. R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003). [CrossRef] [PubMed]
  12. A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27(9), 743–745 (2002). [CrossRef]
  13. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003). [CrossRef]
  14. “BioRyx 200 Applications,” http://www.arryx.xom/PDFdocs/BiorryxApplications.pdf .
  15. S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005). [CrossRef]
  16. S. K. Mohanty and P. K. Gupta, “Laser-assisted three-dimensional rotation of microscopic objects,” Rev. Sci. Instrum. 75(7), 2320–2322 (2004). [CrossRef]
  17. S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004). [CrossRef] [PubMed]
  18. S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005). [CrossRef] [PubMed]
  19. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048–6050 (2004). [CrossRef]
  20. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004). [CrossRef] [PubMed]
  21. P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004). [CrossRef] [PubMed]
  22. A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun. 193(1-6), 45–50 (2001). [CrossRef]
  23. H. Rouse, Elementary Mechanics of Fluids, Ch. VIII (Wiley Eastern Pvt. Ltd, 1970).
  24. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002). [CrossRef] [PubMed]
  25. V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002). [CrossRef]
  26. H. Ukita and M. Kanehira, “A Shuttlecock Optical Rotator—Its Design, Fabrication and Evaluation for a Microfluidic Mixer,” IEEE J. Quantum Electron. 8(1), 111–117 (2002). [CrossRef]
  27. S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007). [CrossRef]
  28. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003). [CrossRef] [PubMed]
  29. M. Khan, S. K. Mohanty, and A. K. Sood, “Optically-driven red blood cell rotor in linearly polarized laser tweezers,” Pramana 65(5), 777–786 (2005). [CrossRef]
  30. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004). [CrossRef]
  31. S. H. Tao, X.-C. Yuan, J. Lin, X. Peng, and H. Niu, “Fractional optical vortex beam induced rotation of particles,” Opt. Express 13(20), 7726–7731 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MPG (1656 KB)     
» Media 2: MPG (2138 KB)     
» Media 3: MPG (4680 KB)     
» Media 4: MPG (1375 KB)     
» Media 5: MPG (474 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited