OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7790–7798

Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers

Christos Markos, Wu Yuan, Kyriakos Vlachos, Graham E. Town, and Ole Bang  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7790-7798 (2011)
http://dx.doi.org/10.1364/OE.19.007790


View Full Text Article

Enhanced HTML    Acrobat PDF (1109 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present experimentally feasible designs of a dual-core microstructured polymer optical fiber (mPOF), which can act as a highly sensitive, label-free, and selective biosensor. An immobilized antigen sensing layer on the walls of the holes in the mPOF provides the ability to selectively capture antibody biomolecules. The change of the layer thickness of biomolecules can then be detected as a change in the coupling length between the two cores. We compare mPOF structures with 1, 2, and 3 air-holes between the solid cores and show that the sensitivity increases with increasing distance between the cores. Numerical calculations indicate a record sensitivity up to 20 nm/nm (defined as the shift in the resonance wavelength per nm biolayer) at visible wavelengths, where the mPOF has low loss.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(060.4005) Fiber optics and optical communications : Microstructured fibers
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Sensors

History
Original Manuscript: January 20, 2011
Revised Manuscript: March 29, 2011
Manuscript Accepted: March 31, 2011
Published: April 7, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Christos Markos, Wu Yuan, Kyriakos Vlachos, Graham E. Town, and Ole Bang, "Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers," Opt. Express 19, 7790-7798 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7790


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  2. M. A. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C. M. de Sterke, and N. A. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001). [CrossRef] [PubMed]
  3. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007). [CrossRef] [PubMed]
  4. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber: erratum,” Opt. Lett. 32(9), 1059–1059 (2007). [CrossRef]
  5. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  6. T. M. Monro, D. J. Richardson, and P. J. Bennet, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999). [CrossRef]
  7. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004). [CrossRef] [PubMed]
  8. L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006). [CrossRef] [PubMed]
  9. M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007). [CrossRef]
  10. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  11. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006). [CrossRef] [PubMed]
  12. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34(24), 3890–3892 (2009). [CrossRef] [PubMed]
  13. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008). [CrossRef] [PubMed]
  14. J. M. Fini, “Microstructure fibers for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004). [CrossRef]
  15. Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005). [CrossRef] [PubMed]
  16. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006). [CrossRef] [PubMed]
  17. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16(25), 20834–20847 (2008). [CrossRef] [PubMed]
  18. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009). [CrossRef] [PubMed]
  19. B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17(18), 16306–16321 (2009). [CrossRef] [PubMed]
  20. W. Yuan, G. E. Town, and O. Bang, “Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber,” IEEE Sens. J. 10(7), 1767–1770 (2010). [CrossRef]
  21. G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010). [CrossRef] [PubMed]
  22. B. Sun, M. Y. Chen, Y. K. Zhang, J. C. Yang, J. Q. Yao, and H. X. Cui, “Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing,” Opt. Express 19(5), 4091–4100 (2011). [CrossRef] [PubMed]
  23. Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006). [CrossRef]
  24. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005). [CrossRef] [PubMed]
  25. B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000). [CrossRef]
  26. W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett. 84(10), 1689–1691 (2004). [CrossRef]
  27. M. Hansen, and G. E. Town, “All-optical switching in dual-core microstructured optical fibres modeled using beam-propagation”, Proceedings, 28th Australian Conference on Optical Fibre Technology (ACOFT2003), Melbourne
  28. M. Hansen, and G. E. Town, “Properties of dual-core couplers in microstructured optical fibres,” Proceeedings, 28th European Conference on Optical Communications (ECOC/IOOC 2003), Vol. 3, p.616–617, Rimini, September, 2003.
  29. M. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres, (Springer, 2008), Chap. 7.
  30. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010). [CrossRef] [PubMed]
  31. G. E. Town, R. F. Copperwhite, R. Kribich, K. O’Dwyer, and B. D. MacCraith, “Comparison of multimode and multichannel couplers for evanescent sensing of refractive index,” in Proc. 30th Australian Conf. Optical Fiber Technol., Sydney, Australia, 2005.
  32. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-Filled Solid-Core Photonic Bandgap Fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009). [CrossRef]
  33. K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005). [CrossRef]
  34. E. Palik, Handbook of Optical Constants of Solids I–III (Academic, 1998).
  35. I. D. Nikolov and C. D. Ivanov, “Optical Plastic Refractive Measurements in the Visible and the Near-Infrared Regions,” Appl. Opt. 39(13), 2067–2070 (2000). [CrossRef]
  36. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002). [PubMed]
  37. J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, “A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers,” Biosens. Bioelectron. 16(9-12), 745–755 (2001). [CrossRef] [PubMed]
  38. J. Laegsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29(21), 2473–2475 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited