OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7807–7815

Blind self-calibrating algorithm for phase-shifting interferometry by use of cross-bispectrum

Hongwei Guo  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7807-7815 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A blind self-calibrating algorithm for phase-shifting interferometry is presented, with which the nonlinear interaction introduced by phase shift errors, between the reconstructed phases and the reconstructed amplitudes of the reference wave, is measured with cross-bispectrum. Minimizing an objective function based on this cross-bispectrum allows accurately estimating the true phase shifts from only three interferograms in the absence of any supplementary assumptions and knowledge about these interferograms.

© 2011 OSA

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: February 7, 2011
Revised Manuscript: March 30, 2011
Manuscript Accepted: March 30, 2011
Published: April 7, 2011

Hongwei Guo, "Blind self-calibrating algorithm for phase-shifting interferometry by use of cross-bispectrum," Opt. Express 19, 7807-7815 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. Morgan, “Least-squares estimation in phase-measurement interferometry,” Opt. Lett. 7(8), 368–370 (1982). [CrossRef] [PubMed]
  2. J. E. Greivenkamp, “Generlized data reduction for heterodyne interferometry,” Opt. Eng. 23, 350–352 (1984).
  3. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987). [CrossRef] [PubMed]
  4. J. Schwider, O. Falkenstörfer, H. Schreiber, A. Zöller, N. Streibl, and ., “New compensating four-phase algorithm for phase-shift interferometry,” Opt. Eng. 32(8), 1883–1885 (1993). [CrossRef]
  5. Y. Surrel, “Phase stepping: a new self-calibrating algorithm,” Appl. Opt. 32(19), 3598–3600 (1993). [CrossRef] [PubMed]
  6. K. Okada, A. Sato, and J. Tsujiuchi, “Simultaneous calculation of phase distribution and scanning phase shifting interferometry,” Opt. Commun. 84(3-4), 118–124 (1991). [CrossRef]
  7. C. T. Farrell and M. A. Player, “Phase step measurement and variable step algorithms in phase-shifting interferometry,” Meas. Sci. Technol. 3(10), 953–958 (1992). [CrossRef]
  8. I.-B. Kong and S.-W. Kim, “General algorithm of phase-shifting interferometry by iterative least-squares fitting,” Opt. Eng. 34(1), 183–188 (1995). [CrossRef]
  9. X. Chen, M. Gramaglia, and J. A. Yeazell, “Phase-shifting interferometry with uncalibrated phase shifts,” Appl. Opt. 39(4), 585–591 (2000). [CrossRef]
  10. M. Chen, H. Guo, and C. Wei, “Algorithm immune to tilt phase-shifting error for phase-shifting interferometers,” Appl. Opt. 39(22), 3894–3898 (2000). [CrossRef]
  11. H. Guo, Z. Zhao, and M. Chen, “Efficient iterative algorithm for phase-shifting interferometry,” Opt. Lasers Eng. 45(2), 281–292 (2007). [CrossRef]
  12. O. Y. Kwon, “Multichannel phase-shifted interferometer,” Opt. Lett. 9(2), 59–61 (1984). [CrossRef] [PubMed]
  13. L. Z. Cai, Q. Liu, and X. L. Yang, “Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps,” Opt. Lett. 28(19), 1808–1810 (2003). [CrossRef] [PubMed]
  14. L. Z. Cai, Q. Liu, and X. L. Yang, “Simultaneous digital correction of amplitude and phase errors of retrieved wave-front in phase-shifting interferometry with arbitrary phase shift errors,” Opt. Commun. 233(1-3), 21–26 (2004). [CrossRef]
  15. X. F. Xu, L. Z. Cai, X. F. Meng, G. Y. Dong, and X. X. Shen, “Fast blind extraction of arbitrary unknown phase shifts by an iterative tangent approach in generalized phase-shifting interferometry,” Opt. Lett. 31(13), 1966–1968 (2006). [CrossRef] [PubMed]
  16. P. Gao, B. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34(22), 3553–3555 (2009). [CrossRef] [PubMed]
  17. Z. Wang and B. Han, “Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms,” Opt. Lett. 29(14), 1671–1673 (2004). [CrossRef] [PubMed]
  18. K. A. Goldberg and J. Bokor, “Fourier-transform method of phase-shift determination,” Appl. Opt. 40(17), 2886–2894 (2001). [CrossRef]
  19. O. Soloviev and G. Vdovin, “Phase extraction from three and more interferograms registered with different unknown wavefront tilts,” Opt. Express 13(10), 3743–3753 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-10-3743 . [CrossRef] [PubMed]
  20. H. Guo, Y. Yu, and M. Chen, “Blind phase shift estimation in phase-shifting interferometry,” J. Opt. Soc. Am. A 24(1), 25–33 (2007). [CrossRef]
  21. K. S. Lii and K. N. Helland, “Cross-bispectrum computation and variance estimation,” ACM Trans. Math. Softw. 7(3), 284–294 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited