OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7856–7864

All-optical ultrafast control of beaming through a single sub-wavelength aperture in a metal film

Mohamed A. Swillam, Nir Rotenberg, and Henry M. van Driel  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7856-7864 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1511 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an ultrafast all-optical technique to control and beam the light emerging from a sub-wavelength slit in a planar gold film by exciting a transient grating in the area around the slit. A FDTD model is used to show how excitation of surface plasmon polaritons by the grating governs the beaming process. Both the grating and the beaming effect are shown to decay on a picosecond time-scale. An on-off contrast of 5 dB is obtained for the beaming, with a divergence angle of only 2.4 degrees.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(320.7080) Ultrafast optics : Ultrafast devices
(250.5403) Optoelectronics : Plasmonics
(320.7085) Ultrafast optics : Ultrafast information processing

ToC Category:
Ultrafast Optics

Original Manuscript: February 25, 2011
Manuscript Accepted: March 16, 2011
Published: April 7, 2011

Mohamed A. Swillam, Nir Rotenberg, and Henry M. van Driel, "All-optical ultrafast control of beaming through a single sub-wavelength aperture in a metal film," Opt. Express 19, 7856-7864 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  3. F. J. Garcı́a-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500–4502 (2003). [CrossRef]
  4. L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003). [CrossRef] [PubMed]
  5. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003). [CrossRef] [PubMed]
  6. D. van Oosten, M. Spasenović, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10(1), 286–290 (2010). [CrossRef]
  7. L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 041405 (2005). [CrossRef]
  8. D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14(8), 3503–3511 (2006). [CrossRef] [PubMed]
  9. A. I. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Beaming matter waves from a subwavelength aperture,” Phys. Rev. A 74(2), 021601 (2006). [CrossRef]
  10. C. T. Wang, C. L. Du, Y. G. Lv, and X. G. Luo, “Surface electromagnetic wave excitation and diffraction by subwavelength slit with periodically patterned metallic grooves,” Opt. Express 14(12), 5671–5681 (2006). [CrossRef] [PubMed]
  11. Z. Sun, “Beam splitting with a modified metallic nano-optic lens,” Appl. Phys. Lett. 89(26), 261119 (2006). [CrossRef]
  12. B. Guo, Q. Gan, G. Song, J. Gao, and L. Chen, “Numerical study of a high-resolution far-field scanning optical microscope via a surface plasmon-modulated light source,” J. Lightwave Technol. 25(3), 830–833 (2007). [CrossRef]
  13. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010). [CrossRef] [PubMed]
  14. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005). [CrossRef]
  15. J. Christensen, A. I. Fernandez-Dominguez, F. De Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Collimation of sound assisted by acoustic surface waves,” Nat. Phys. 3(12), 851–852 (2007). [CrossRef]
  16. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  17. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008). [CrossRef] [PubMed]
  18. N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces,” Phys. Rev. Lett. 105(1), 017402 (2010). [CrossRef] [PubMed]
  19. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Eksp. Teor. Fiz. 66, 776–781 (1974) (Sov. Phys. JETP 39, 375 (1974)).
  20. C.-K. Sun, F. Vallee, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermailization in gold,” Phys. Rev. B 50, 15337 (1994). [CrossRef]
  21. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  22. A. Taflov, and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, second edition (Artech House, Norwood, MA, 2000).
  23. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  24. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996). [CrossRef]
  25. Z. Lin and L. V. Zhigilei, “Thermal excitation of d band electrons in Au: implications for laser-induced phase transformations,” 6261, Proc. SPIE 62610U (2006). [CrossRef]
  26. J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000). [CrossRef]
  27. R. Rosei, F. Antonangeli, and U. Grassano, “d Bands position and width in gold from very low temperature thermomodulation measurements,” Surf. Sci. 37, 689–699 (1973). [CrossRef]
  28. N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4(10), 3321–3344 (1971). [CrossRef]
  29. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast optical properties of gold nanoshell,” J. Opt. Soc. Am. B 16(10), 1814 (1999). [CrossRef]
  30. N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80(24), 245420 (2009). [CrossRef]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  32. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. A, Pure Appl. Opt. 7(2), S159–S164 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (142 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited