OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7872–7884

Design and analysis of transmission enhanced multi-segment grating in MZI configuration for slow light applications

Shengling Deng and Z. Rena Huang  »View Author Affiliations

Optics Express, Vol. 19, Issue 8, pp. 7872-7884 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper proposes to use slow light effects near the Brillouin zone band edge of one-dimensional gratings for reducing the size of integrated electro-optic (EO) modulators. The gratings are built within the arms of a Mach-Zehnder Interferometer (MZI) for intensity modulation. To overcome the inherent high reflection and low extinction ratio, we introduce various multi-segment grating designs. We use coupled-mode theory and derive transfer matrices to analyze the spectral transmittance and phase delay of each arm of the interferometer. Calculations show that a size-reduction of a factor of 2 or more can be achieved at λ = 1.574µm with an insertion loss of 0.17dB and an amplitude modulation extinction ratio of 18.84dB. The simulated structure is based on a Si slab-waveguide 0.2 μm thick with 30nm deep grating groves on SiO2 substrate.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Integrated Optics

Original Manuscript: November 2, 2010
Revised Manuscript: March 11, 2011
Manuscript Accepted: March 29, 2011
Published: April 8, 2011

Shengling Deng and Z. Rena Huang, "Design and analysis of transmission enhanced multi-segment grating in MZI configuration for slow light applications," Opt. Express 19, 7872-7884 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  2. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005). [CrossRef]
  3. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]
  4. E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, and J. Greve, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B Chem. 40(2-3), 147–153 (1997). [CrossRef]
  5. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach–Zehnder biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998). [CrossRef]
  6. S. Deng, Z. R. Huang, and J. F. McDonald, “Design of high efficiency multi-GHz SiGe HBT electro-optic modulator,” Opt. Express 17(16), 13425–13428 (2009). [CrossRef] [PubMed]
  7. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007). [CrossRef]
  8. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005). [CrossRef] [PubMed]
  9. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010). [CrossRef]
  10. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C.-W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31(9), 1235–1237 (2006). [CrossRef] [PubMed]
  11. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002). [CrossRef]
  12. D. J. Moss, B. Corcoran, C. Monat, C. Grillet, T. P. White, L. O'Faolain, T. F. Krauss, and B. J. Eggleton, “Slow-light enhanced nonlinear optics in silicon photonic crystal waveguides,” PIER 6, 273–278 (2010).
  13. L. Wei and J. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15(8), 1405–1410 (1997). [CrossRef]
  14. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26(16), 3474–3478 (1987). [CrossRef] [PubMed]
  15. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg grating and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6(8), 995–997 (1994). [CrossRef]
  16. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31(1), 50–52 (2006). [CrossRef] [PubMed]
  17. M. Nevière, and E. Popov, Light propagation in periodic media: differential theory and design, (CRC Press, 2002).
  18. S.-L. Chuang, Physics of optoelectronic devices, (John Wiley & Sons, Inc, 1995), chap. 8.
  19. M. V. Klein, and T. E. Furtak, Optics, (John Wiley & Sons, Inc, 1986), chap.5. [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited