OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7885–7893

Theoretical study of nanophotonic directional couplers comprising near-field-coupled metal nanoparticles

Petter Holmström, Jun Yuan, Min Qiu, Lars Thylén, and Alexander M. Bratkovsky  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7885-7893 (2011)
http://dx.doi.org/10.1364/OE.19.007885


View Full Text Article

Enhanced HTML    Acrobat PDF (1441 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The properties of integrated-photonics directional couplers composed of near-field-coupled arrays of metal nanoparticles are analyzed theoretically. It is found that it is possible to generate very compact, submicron length, high field-confinement and functionality devices with very low switch energies. The analysis is carried out for a hypothetical lossless silver to demonstrate the potential of this type of circuits for applications in telecom and interconnects. Employing losses of real silver, standalone devices with the above properties are still feasible in optimized metal nanoparticle structures.

© 2011 OSA

OCIS Codes
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics
(250.6715) Optoelectronics : Switching

ToC Category:
Optoelectronics

History
Original Manuscript: December 10, 2010
Revised Manuscript: February 28, 2011
Manuscript Accepted: March 22, 2011
Published: April 8, 2011

Citation
Petter Holmström, Jun Yuan, Min Qiu, Lars Thylén, and Alexander M. Bratkovsky, "Theoretical study of nanophotonic directional couplers comprising near-field-coupled metal nanoparticles," Opt. Express 19, 7885-7893 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7885


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali and S. J. Fathpour, “Silicon photonics,” Lightwave Technol. 24(12), 4600–4615 (2006). [CrossRef]
  2. L. Thylén, S. He, L. Wosinski, and D. Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7(12), 1961–1967 (2006). [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  4. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006). [CrossRef] [PubMed]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001). [CrossRef]
  6. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998). [CrossRef]
  7. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004). [CrossRef]
  8. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006). [CrossRef]
  9. D. S. Citrin, “Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium,” Opt. Lett. 31(1), 98–100 (2006). [CrossRef] [PubMed]
  10. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett. 32(8), 973–975 (2007). [CrossRef] [PubMed]
  11. J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96(18), 181102 (2010). [CrossRef]
  12. T. G. Mackay and A. Lakhtakia, “Comment on “criterion for negative refraction with low optical losses from a fundamental principle of causality”,” Phys. Rev. Lett. 99(18), 189701, author reply 189702 (2007). [CrossRef] [PubMed]
  13. P. Holmström, L. Thylen, and A. M. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010). [CrossRef]
  14. T. Tamir, ed., Guided-Wave Optoelectronics (Springer-Verlag, Berlin, 1988).
  15. E. J. Murphy, ed., Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, New York, 1999).
  16. S. Yang, Q. Liu, J. Yuan, and S. Zhou, “Fast and optimal design of a k-band transmit-receive active antenna array,” Prog. Electromagn. Res. B 9, 281–299 (2008). [CrossRef]
  17. X. Q. Sheng and E. K. N. Yung, “Implementation and experiments of a hybrid algorithm of the MLFMA-enhanced FE-BI method for open-region inhomogeneous electromagnetic problems,” IEEE Trans. Antenn. Propag. 50(2), 163–167 (2002). [CrossRef]
  18. J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering,” Microw. Opt. Technol. Lett. 10(1), 14–19 (1995). [CrossRef]
  19. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  20. C. J. Setterlind and L. Thylen, “Directional coupler switches with optical gain,” IEEE J. Quantum Electron. 22(5), 595–602 (1986) (and references therein). [CrossRef]
  21. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005). [CrossRef]
  22. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008). [CrossRef] [PubMed]
  23. P. Mulvaney, J. Pérez-Juste, M. Giersig, L. M. Liz-Marzán, and C. Pecharromán, “Drastic surface plasmon mode shifts in gold nanorods due to electron charging,” Plasmonics 1(1), 61–66 (2006). [CrossRef]
  24. Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” Phys. Stat. Sol. RRL 4(10), 274–276 (2010). [CrossRef]
  25. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010). [CrossRef]
  26. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000). [CrossRef]
  27. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714 (2002). [CrossRef]
  28. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005). [CrossRef] [PubMed]
  29. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34(10), 1498–1500 (2009). [CrossRef] [PubMed]
  30. L. Thylen, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on integration as determined by power dissipation and signal-to-noise ratio in loss-compensated photonic integrated circuits based on metal/quantum-dot materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 3 Fig. 1 Fig. 2
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited