OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7894–7902

Photoionization in alkali lasers

R.J. Knize, B.V. Zhdanov, and M.K. Shaffer  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7894-7902 (2011)
http://dx.doi.org/10.1364/OE.19.007894


View Full Text Article

Enhanced HTML    Acrobat PDF (949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have calculated photoionization rates in alkali lasers. The photoionization of alkali atoms in the gain medium of alkali lasers can significantly degrade the laser performance by reducing the neutral alkali density and with it the gain. For a ten atmosphere Rb laser and a Cs exciplex laser, the photoionization induced alkali atom loss rates are greater than 105 sec−1. These high loss rates will quickly deplete the neutral alkali density, reducing gain, and may require fast, possibly, supersonic flow rates to sufficiently replenish the neutral medium for CW operation.

© 2011 OSA

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3380) Lasers and laser optics : Laser materials
(140.3460) Lasers and laser optics : Lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 4, 2011
Revised Manuscript: February 25, 2011
Manuscript Accepted: February 28, 2011
Published: April 8, 2011

Citation
R.J. Knize, B.V. Zhdanov, and M.K. Shaffer, "Photoionization in alkali lasers," Opt. Express 19, 7894-7902 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7894


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004). [CrossRef]
  2. S. S. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, “Hydrocarbon-free resonance transition 795-nm rubidium laser,” Opt. Lett. 32(16), 2423–2425 (2007). [CrossRef] [PubMed]
  3. B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly Efficient Optically Pumped Cesium Vapor Laser,” Opt. Commun. 260(2), 696–698 (2006). [CrossRef]
  4. B. V. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007). [CrossRef] [PubMed]
  5. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple Laser Diode Array Pumped Cs laser with 48 W Output Power,” Electron. Lett. 44(9), 582–583 (2008). [CrossRef]
  6. J. D. Readle, C. J. Wagner, J. T. Verdeyen, Carroll, and D. L. Eden, “Lasing in alkali atoms pumped by the dissociation of the alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D-7 - 1960D-8 (2009). [CrossRef]
  7. J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer Pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K–1 - 75810K–9 (2010). [CrossRef]
  8. J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett . 94, 251112–1 – 2511121–3 (2009). [CrossRef]
  9. D. Budker, D. Kimball, and D. DeMille, Atomic Physics and exploration through problems and solutions (Oxford University Press, New York, 142–144, 2004).
  10. M. S. Safronova and C. W. Clark, “Inconsistencies between lifetime and polarizability measurements in Cs,” Phys. Rev. A 69, 040501–1 -, 040501–4 (R) (2004). [CrossRef]
  11. M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509–1 – 022509–8 (2004). [CrossRef]
  12. J. E. Sansonetti, “Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Potassium (K I through K XIX),” J. Phys. Chem. Ref. Data 37(1), 7–96 (2008). [CrossRef]
  13. M. Głódź, A. Huzandrov, M. S. Safronova, I. Sydoryk, and J. Szonert, “Experimental and theoretical study of the nf-level lifetimes of potassium,” Phys. Rev. A 77, 022503–1 - 022503–8 (2008).
  14. O. S. Heavens, “Radiative transition probabilities of the lower excited states of the alkali metals,” J. Opt. Soc. Am. 51(10), 1058–1061 (1961). [CrossRef]
  15. R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Nobel-gas-induced broadening of transitions to Rydberg S and D states in atomic sodium,” Phys. Rev. A 21(4), 1124–1133 (1980). [CrossRef]
  16. J. F. Kielkopf and R. B. Knollenberg, “Broadening and shift of the sodium diffuse series by noble gas,” Phys. Rev. A 12(2), 559–566 (1975). [CrossRef]
  17. G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80, 062718–1 - 062718–8 (2009).
  18. F. Rostas and J. L. Lemaire, “Low pressure measurement of the broadening and shift of the caesium 4555Å and 4593Å lines by helium and argon,” J. Phys. B 4(4), 555–564 (1971). [CrossRef]
  19. B. C. Duncan, V. Sanchez-Villicana, P. L. Gould, and H. R. Sadeghpour, “Measurement of the Rb(5D(5/2)) photoionization cross section using trapped atoms,” Phys. Rev. A 63, 043411–1 - 043411–7 (2001). [CrossRef]
  20. B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically Pumped Potassium Laser,” Opt. Commun. 270(2Issue 2), 353–355 (2007). [CrossRef]
  21. M. A. Mahmoud, “Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation,” Optica Applicata XL(1), 129–141 (2010).
  22. D. I. A. Shen Yi-Fan, “Kang, MU Boa-Xia, Wang Shu-Ying, CUI Xiu-Hua, “Energy pooling collisions in rubidium: 5P3/2+5P3/2 → 5S+(nl=5D,7S),” Chin. Phys. Lett. 22, 2805 (2005). [CrossRef]
  23. R. K. Namiotka, J. Huennekens, and M. Allegrini, “Energy pooling collisions in potassium: 4PJ+4PJ → 4S+(nl=5P, 6S, 4D),” Phys. Rev. A 56(1), 514–520 (1997). [CrossRef]
  24. S. Wane and M. Aymar, “Excited state photoionization and radiative recombination for ions of the potassium isoelectronic sequence,” J. Phys. B 20(12), 2657–2675 (1987). [CrossRef]
  25. S. Wane, “Radiative recombination in rubidium,” J. Phys. B 18(19), 3881–3893 (1985). [CrossRef]
  26. E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time resolved ion collection in cesium vapor,” Opt. Commun. 55(5), 329–334 (1985). [CrossRef]
  27. Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92(2), 690–697 (2002). [CrossRef]
  28. L. P. Harris, “Ionization and recombination in cesium seeded plasmas near thermal equilibrium,” J. Appl. Phys. 36(5), 1543–1553 (1965). [CrossRef]
  29. A. C. Tam, “Quasiresonant laser produced plasma: An efficient mechanism for localized breakdown,” J. Appl. Phys. 51(9), 4682–4687 (1980). [CrossRef]
  30. A. C. Tam and W. Happer, “Plasma production in a cs vapor by a weak CW laser beam at 6010Å,” Opt. Commun. 21(3), 403–407 (1977). [CrossRef]
  31. Q. Zhu, B. Pan, L. Chena, Y. Wanga, and X. Zhanga, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010). [CrossRef]
  32. W. Happer, “Optical Pumping,” Rev. Mod. Phys. 44(2), 169–249 (1972). [CrossRef]
  33. B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17(17), 14767–14770 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited