OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 7937–7944

High sensitivity SMS fiber structure based refractometer – analysis and experiment

Qiang Wu, Yuliya Semenova, Pengfei Wang, and Gerald Farrell  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 7937-7944 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1041 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated the influence of multimode fiber core (MMFC) diameters and lengths on the sensitivity of an SMS fiber based refractometer. We show that the MMFC diameter has significant influence on the refractive index (RI) sensitivity but the length does not. A refractometer with a lower MMFC diameter has a higher sensitivity. Experimental investigations achieved a maximum sensitivity of 1815 nm/ RIU (refractive index unit) for a refractive index range from 1.342 to 1.437 for a refractometer with a core diameter of 80 μm. The experimental results fit well with the numerical simulation results.

© 2011 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 25, 2011
Revised Manuscript: February 28, 2011
Manuscript Accepted: March 7, 2011
Published: April 11, 2011

Qiang Wu, Yuliya Semenova, Pengfei Wang, and Gerald Farrell, "High sensitivity SMS fiber structure based refractometer–analysis and experiment," Opt. Express 19, 7937-7944 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Han, F. W. Guo, and Y. F. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010). [CrossRef] [PubMed]
  2. T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009). [CrossRef] [PubMed]
  3. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34(1), 76–78 (2009). [CrossRef]
  4. T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002). [CrossRef]
  5. P. Wang, Y. Semenova, Q. Wu, G. Farrell, Y. Ti, and J. Zheng, “Macrobending single-mode fiber-based refractometer,” Appl. Opt. 48(31), 6044–6049 (2009). [CrossRef] [PubMed]
  6. H. M. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. C. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010). [CrossRef]
  7. O. Frazão, P. Caldas, J. L. Santos, P. V. S. Marques, C. Turck, D. J. Lougnot, and O. Soppera, “Fabry-Perot refractometer based on an end-of-fiber polymer tip,” Opt. Lett. 34(16), 2474–2476 (2009). [CrossRef] [PubMed]
  8. C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel Switzerland) 10(5), 4794–4804 (2010). [CrossRef]
  9. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006). [CrossRef] [PubMed]
  10. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995). [CrossRef]
  11. Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode-multimode-single-mode fiber structure,” J. Lightwave Technol. 26(5), 512–519 (2008). [CrossRef]
  12. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22(2), 469–477 (2004). [CrossRef]
  13. Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Bent SMS fiber structure for temperature measurement,” Electron. Lett. 46(16), 1129–1130 (2010). [CrossRef]
  14. Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011). [CrossRef]
  15. D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21(7), 468–470 (2009). [CrossRef]
  16. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009). [CrossRef]
  17. Q. Wu, A. Muhammad Hatta, Y. Semenova, and G. Farrell, “Use of a single-multiple-single-mode fiber filter for interrogating fiber Bragg grating strain sensors with dynamic temperature compensation,” Appl. Opt. 48(29), 5451–5458 (2009). [CrossRef] [PubMed]
  18. J. E. Antonio-Lopez, J. G. Aguilar-Soto, and D. A. May-Arrioja, P. LiKamWa, and J. J. Sanchez-Mondragon, “Optofluidically tunable MMI filter,” CLEO/IQEC 2009, Baltimore, Maryland (2009), pp. 1–2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited