OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8019–8031

Compression of digital hologram for three-dimensional object using Wavelet-Bandelets transform

Le Thanh Bang, Zulfiqar Ali, Pham Duc Quang, Jae-Hyeung Park, and Nam Kim  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8019-8031 (2011)
http://dx.doi.org/10.1364/OE.19.008019


View Full Text Article

Enhanced HTML    Acrobat PDF (1578 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the transformation based compression algorithms of digital hologram for three-dimensional object, the balance between compression ratio and normalized root mean square (NRMS) error is always the core of algorithm development. The Wavelet transform method is efficient to achieve high compression ratio but NRMS error is also high. In order to solve this issue, we propose a hologram compression method using Wavelet-Bandelets transform. Our simulation and experimental results show that the Wavelet-Bandelets method has a higher compression ratio than Wavelet methods and all the other methods investigated in this paper, while it still maintains low NRMS error.

© 2011 OSA

OCIS Codes
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(100.7410) Image processing : Wavelets
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: December 7, 2010
Revised Manuscript: February 13, 2011
Manuscript Accepted: March 20, 2011
Published: April 12, 2011

Citation
Le Thanh Bang, Zulfiqar Ali, Pham Duc Quang, Jae-Hyeung Park, and Nam Kim, "Compression of digital hologram for three-dimensional object using Wavelet-Bandelets transform," Opt. Express 19, 8019-8031 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8019


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  2. M. L. Piao, N. Kim, and J. H. Park, “Phase contrast projection display using photopolymer,” J. Opt. Soc. Korea 12(4), 319–325 (2008). [CrossRef]
  3. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41(20), 4124–4132 (2002). [CrossRef] [PubMed]
  4. G. A. Mills and I. Yamaguchi, “Effects of quantization in phase-shifting digital holography,” Appl. Opt. 44(7), 1216–1225 (2005). [CrossRef] [PubMed]
  5. A. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14(7), 2625–2630 (2006). [CrossRef] [PubMed]
  6. A. E. Shortt, T. J. Naughton, and B. Javidi, “Histogram approaches for lossy compression of digital holograms of three-dimensional objects,” IEEE Trans. Image Process. 16(6), 1548–1556 (2007). [CrossRef] [PubMed]
  7. H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” Proc. SPIE 2652, 2–9 (1996). [CrossRef]
  8. Y. H. Seo, H. J. Choi, J. S. Yoo, G. S. Lee, C. H. Kim, S. H. Lee, S. H. Lee, and D. W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283(21), 4261–4270 (2010). [CrossRef]
  9. E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009). [CrossRef]
  10. Y. H. Seo, H. J. Choi, and D. W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. 22(2), 144–156 (2007).
  11. E. Le Pennec and S. Mallat, “Sparse geometric image representation with Bandelets,” IEEE Trans. Image Process. 14(4), 423–438 (2005). [CrossRef] [PubMed]
  12. E. Le Pennec and S. Mallat, “Non linear image approximation with Bandelets,” Tech. Rep. CMAP / École Polytechnique (2003).
  13. E. Le Pennec and S. Mallat, “Bandelets image approximation and compression,” Multiscale Model. Simul. 4(3), 992–1039 (2005). [CrossRef]
  14. C. Bernard and E. Le Pennec, “Adaptation of regular grid filtering to irregular grids,” Tech. Rep. CMAP / École Polytechnique (2003).
  15. T. Bose, Digital Signal and Image Processing (Wiley, 2003), Chap. 11, pp. 623–669.
  16. T. W. Ng and K. T. Ang, “Fourier-transform method of data compression and temporal fringe pattern analysis,” Appl. Opt. 44(33), 7043–7049 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited