OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8051–8065

Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy

Jerome Fung, K. Eric Martin, Rebecca W. Perry, David M. Kaz, Ryan McGorty, and Vinothan N. Manoharan  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8051-8065 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (4144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss a new method for simultaneously probing translational, rotational, and vibrational dynamics in dilute colloidal suspensions using digital holographic microscopy (DHM). We record digital holograms of clusters of 1-μm-diameter colloidal spheres interacting through short-range attractions, and we fit the holograms to an exact model of the scattering from multiple spheres. The model, based on the T-matrix formulation, accounts for multiple scattering and near-field coupling. We also explicitly account for the non-asymptotic radial decay of the scattered fields, allowing us to accurately fit holograms recorded with the focal plane located as little as 15 μm from the particle. Applying the fitting technique to a time-series of holograms of Brownian dimers allows simultaneous measurement of six dynamical modes — three translational, two rotational, and one vibrational — on timescales ranging from 10−3 to 1 s. We measure the translational and rotational diffusion constants to a precision of 0.6%, and we use the vibrational data to measure the interaction potential between the spheres to a precision of ∼50 nm in separation distance. Finally, we show that the fitting technique can be used to measure dynamics of clusters containing three or more spheres.

© 2011 OSA

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: January 24, 2011
Revised Manuscript: April 1, 2011
Manuscript Accepted: April 3, 2011
Published: April 12, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Jerome Fung, K. Eric Martin, Rebecca W. Perry, David M. Kaz, Ryan McGorty, and Vinothan N. Manoharan, "Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy," Opt. Express 19, 8051-8065 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Perrin, “Mouvement brownien et réalité moléculaire,” Ann. Chim. Phys. 18, 1–114 (1909).
  2. M. T. Valentine, P. D. Kaplan, D. Thota, J. C. Crocker, T. Gisler, R. K. Prud’homme, M. Beck, and D. A. Weitz, “Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking,” Phys. Rev. E 64, 061506 (2001). [CrossRef]
  3. M. L. Gardel, M. T. Valentine, J. C. Crocker, A. R. Bausch, and D. A. Weitz, “Microrheology of entangled f-actin solutions,” Phys. Rev. Lett. 91, 158302 (2003). [CrossRef] [PubMed]
  4. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
  5. E. Andablo-Reyes, P. Díaz-Leyva, and J. L. Arauz-Lara, “Microrheology from rotational diffusion of colloidal particles,” Phys. Rev. Lett. 94, 106001 (2005). [CrossRef] [PubMed]
  6. J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352–4355 (1999). [CrossRef]
  7. M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay, and D. A. Weitz, “Electric-field-induced capillary attraction between like-charged particles at liquid interfaces,” Nature (London) 420, 299–301 (2002). [CrossRef]
  8. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]
  9. Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, and A. G. Yodh, “Brownian motion of an ellipsoid,” Science 314, 626–630 (2006). [CrossRef] [PubMed]
  10. S. M. Anthony, M. Kim, and S. Granick, “Translation-rotation decoupling of colloidal clusters of various symmetries,” J. Chem. Phys. 129, 244701 (2008). [CrossRef]
  11. D. Mukhija and M. J. Solomon, “Translational and rotational dynamics of colloidal rods by direct visualization with confocal microscopy,” J. Colloid Interface Sci. 314, 98–106 (2007). [CrossRef] [PubMed]
  12. B. J. Berne and R. Pecora, Dynamic Light Scattering (Plenum Press, 1985).
  13. M. Hoffmann, C. S. Wagner, L. Harnau, and A. Wittemann, “3D brownian diffusion of submicron-sized particle clusters,” ACS Nano 3, 3326–3334 (2009). [CrossRef] [PubMed]
  14. C. M. Sorensen, R. C. Mockler, and W. J. O’Sullivan, “Multiple scattering from a system of brownian particles,” Phys. Rev. A 17, 2030–2035 (1978). [CrossRef]
  15. T. M. Kreis, “Frequency analysis of digital holography with reconstruction by convolution,” Opt. Eng. 41, 1829–1839 (2002). [CrossRef]
  16. F. C. Cheong and D. G. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express 18, 6555–6562 (2010). [CrossRef] [PubMed]
  17. Y. Pu and H. Meng, “Intrinsic aberrations due to mie scattering in particle holography,” J. Opt. Soc. Am. A 20, 1920–1932 (2003). [CrossRef]
  18. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010). [CrossRef] [PubMed]
  19. S. H. Lee, Y. Roichman, G. R. Yi, S. H. Kim, S. M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 71, 18275–18282 (2005).
  20. M. Andersson and S. L. Maunu, “Structural studies of poly(N-isopropylacrylamide) microgels: Effect of SDS surfactant concentration in the microgel synthesis,” J. Polym. Sci., Part B: Polym. Phys . 44, 3305–3314 (2006). [CrossRef]
  21. G. Meng, N. Arkus, M. P. Brenner, and V. N. Manoharan, “The free-energy landscape of clusters of attractive hard spheres,” Science 327, 560–563 (2010). [CrossRef] [PubMed]
  22. J. K. Dhont, An Introduction to Dynamics of Colloids (Elsevier, 2003).
  23. F. Perrin, “Mouvement brownien d’un ellipsoide-I. Dispersion diélectrique pour des molécules ellipsoidales,” J. Phys. Radium 7, 497–511 (1934). [CrossRef]
  24. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, 1986).
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  26. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by non-spherical particles: a review,” J. Quant. Spectrosc. Radiative Transfer 55, 535–575 (1996). [CrossRef]
  27. J. Baumgartl and C. Bechinger, “On the limits of digital video microscopy,” Europhys. Lett. 71, 487493 (2005). [CrossRef]
  28. D. W. Mackowski and M. I. Mishchenko, “Calculation of the t matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996). [CrossRef]
  29. C. B. Markwardt, “Non-linear least squares fitting in IDL with MPFIT,” http://arxiv.org/abs/0902.2850 (2009).
  30. S. Asakura and F. Oosawa, “Interaction between particles suspended in solutions of macromolecules,” J. Polym. Sci. 33, 183–192 (1958). [CrossRef]
  31. A. Vrij, “Polymers at interfaces and the interactions in colloidal dispersions,” Pure Appl. Chem. 48, 471–483 (1976). [CrossRef]
  32. M. Doi and S. F. Edwards, “Dynamics of rod-like macromolecules in concentrated solution. Part 1,” J. Chem. Soc. Faraday Trans. 2 74, 560–570 (1978). [CrossRef]
  33. W. J. Wiscombe, “Improved mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef] [PubMed]
  34. M. I. Mishchenko, “Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation,” Appl. Opt. 39, 1026–1031 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited