OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8079–8084

Optimizing the subcarrier granularity of coherent optical communications systems

Liang B. Du and Arthur J. Lowery  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8079-8084 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1099 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we use numerical simulations to show that the symbol rate has a significant effect on the nonlinearity-limited performance of coherent optical communication systems. We consider the case where orthogonal subcarriers are used to maximize the spectral efficiency. Symbol rates from 0.78125 Gbaud to 100 Gbaud and links of up to 3200 km, without inline dispersion compensation, were simulated. The results show that the optimal symbol rates for the 800-km link and 3200-km link were 6.25-Gbaud and 3.125-Gbaud respectively. The optimal baud rate decreases as the length of the link is increased. After 3200 km, the performance of the 100-Gbaud system was worst in the nonlinearity-limited regime producing a received Q 2.4-dB lower than the 3.125-Gband system. The variation in the nonlinearity-limited performance is explained by using Cross-Phase-Modulation (XPM) theory and by considering the RF spectra of the intensity fluctuations of the signal along the link. The findings of the paper suggest that the maximum capacity of nonlinear dispersive optical links can only be achieved by using multiple subcarriers carrying a few Gbaud each, and not by high symbol rate systems.

© 2011 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 8, 2011
Revised Manuscript: March 31, 2011
Manuscript Accepted: April 3, 2011
Published: April 12, 2011

Liang B. Du and Arthur J. Lowery, "Optimizing the subcarrier granularity of coherent optical communications systems," Opt. Express 19, 8079-8084 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s Reduced-Guard-Interval CO-OFDM Transmission Over 2000 km of Ultra-Large-Area Fiber and Five 80-GHz-Grid ROADMs,” Lightwave Technology Journalism 29, 483–490 (2011). [CrossRef]
  2. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008). [CrossRef] [PubMed]
  3. R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101(16), 163901 (2008). [CrossRef] [PubMed]
  4. A. D. Ellis, Z. Jian, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010). [CrossRef]
  5. F. Forghieri, “Granularity in WDM networks: the role of fiber nonlinearities,” IEEE Photon. Technol. Lett. 8(10), 1400–1402 (1996). [CrossRef]
  6. C. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–72 (2008). [CrossRef]
  7. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006). [CrossRef]
  8. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009). [CrossRef]
  9. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005). [CrossRef]
  10. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010). [CrossRef]
  11. B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010). [CrossRef]
  12. T. K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, “Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 14(3), 249–260 (1996). [CrossRef]
  13. W. Shieh and T. Yan, “Ultrahigh-Speed Signal Transmission Over Nonlinear and Dispersive Fiber Optic Channel: The Multicarrier Advantage,” IEEE Photon. J. 2(3), 276–283 (2010). [CrossRef]
  14. B. Goebel, S. Hellerbrand, and N. Hanik, “Link-aware precoding for nonlinear optical OFDM transmission,” in Optical Fiber Communication Conference (OSA, 2010), OTuE4.
  15. L. B. Du and A. J. Lowery, “Improved nonlinearity precompensation for long-haul high-data-rate transmission using coherent optical OFDM,” Opt. Express 16(24), 19920–19925 (2008). [CrossRef] [PubMed]
  16. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011). [CrossRef] [PubMed]
  17. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited