OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8102–8107

Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators

Lin Zhang, Yang Yue, Raymond G. Beausoleil, and Alan E. Willner  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8102-8107 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze chromatic dispersion in tightly curved silicon strip and slot waveguides with high index contrast. It is found that the dispersion profile is changed dramatically at both polarization states, when bending radius is reduced to a few microns. Zero-dispersion wavelength may shift by more than 220 nm, which raises a critical issue in design and optimization of micro-resonator-based devices for nonlinear applications. We propose a slot structure to tailor in-cavity dispersion and obtain spectral lines with the standard deviation of frequency-dependent free spectral range of the slot-waveguide resonator made 460 times smaller than that of a strip-waveguide resonator, making it suitable for on-chip octave-spanning frequency comb generation in mid-infrared wavelength range.

© 2011 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices
(260.2030) Physical optics : Dispersion
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: March 16, 2011
Revised Manuscript: April 11, 2011
Manuscript Accepted: April 11, 2011
Published: April 13, 2011

Lin Zhang, Yang Yue, Raymond G. Beausoleil, and Alan E. Willner, "Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators," Opt. Express 19, 8102-8107 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
  2. H. F. Taylor, “Losses at corner bends in dielectric waveguides,” Appl. Opt. 16(3), 711–716 (1977). [CrossRef] [PubMed]
  3. E.-G. Neumann, “Curved dielectric optical waveguides with reduced transition losses,” IEE Proc. Microwaves, Antennas Propag. 129, 278–280 (1982).
  4. R. Espinola, R. Ahmad, F. Pizzuto, M. Steel, and R. Osgood, “A study of high-index-contrast 90 degree waveguide bend structures,” Opt. Express 8(9), 517–528 (2001). [CrossRef] [PubMed]
  5. C. Xudong, C. Hafner, R. Vahldieck, and F. Robin, “Sharp trench waveguide bends in dual mode operation with ultra-small photonic crystals for suppressing radiation,” Opt. Express 14(10), 4351–4356 (2006). [CrossRef] [PubMed]
  6. A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001). [CrossRef]
  7. A. Sakai, T. Fukazawa, and T. Baba, “Estimation of polarization crosstalk at a micro-bend in Si-photonic wire waveguide,” J. Lightwave Technol. 22(2), 520–525 (2004). [CrossRef]
  8. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  9. P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006). [CrossRef] [PubMed]
  10. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  11. Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009). [CrossRef]
  12. P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009). [CrossRef]
  13. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef] [PubMed]
  14. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008). [CrossRef] [PubMed]
  15. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]
  16. L. Yin, Q. Lin, and G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett. 31(9), 1295–1297 (2006). [CrossRef] [PubMed]
  17. J. I. Dadap, N. C. Panoiu, X. Chen, I.-W. Hsieh, X. Liu, C.-Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood., “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16(2), 1280–1299 (2008). [CrossRef] [PubMed]
  18. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007). [CrossRef]
  19. L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express 18(12), 13187–13193 (2010). [CrossRef] [PubMed]
  20. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18(19), 20529–20534 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited