OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8173–8178

Widely-tunable parametric short-wave infrared transmitter for CO2 trace detection

Slaven Moro, Aleksandar Danicic, Nikola Alic, Nicholas G. Usechak, and Stojan Radic  »View Author Affiliations

Optics Express, Vol. 19, Issue 9, pp. 8173-8178 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-fiber, tunable, short-wave infrared transmitter is demonstrated using efficient four-wave mixing in conventional L and O bands. To realize this source a highly-nonlinear fiber, exhibiting low bend loss over the short-wave infrared spectral band, is employed because of its advantageous properties as a nonlinear mixing medium. The transmitter was subsequently exploited to probe and detect trace levels of carbon dioxide in the 2051-nm spectral region where its beam properties, tunability, narrow linewidth, and stability all coalesce to permit this application. This work indicates this transmitter can serve as a robust source for sensing carbon dioxide and other trace gasses in the short-wave infrared spectral region and should therefore play an important role in future applications.

© 2011 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

ToC Category:
Nonlinear Optics

Original Manuscript: January 3, 2011
Revised Manuscript: March 16, 2011
Manuscript Accepted: March 22, 2011
Published: April 14, 2011

Slaven Moro, Aleksandar Danicic, Nikola Alic, Nicholas G. Usechak, and Stojan Radic, "Widely-tunable parametric short-wave infrared transmitter for CO2 trace detection," Opt. Express 19, 8173-8178 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ebrahim-Zadeh, and I. T. Sorokina, eds., Mid-Infrared Coherent Sources and Applications (Springer, 2007).
  2. C. Weitkamp, ed., Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).
  3. M. Raybaut, T. Schmid, A. Godard, A. K. Mohamed, M. Lefebvre, F. Marnas, P. Flamant, A. Bohman, P. Geiser, and P. Kaspersen, “High-energy single-longitudinal mode nearly diffraction-limited optical parametric source with 3 MHz frequency stability for CO2 DIAL,” Opt. Lett. 34(13), 2069–2071 (2009). [CrossRef] [PubMed]
  4. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2.,” Appl. Opt. 43(26), 5092–5099 (2004). [CrossRef] [PubMed]
  5. A. Henderson and R. Stafford, “Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source,” Opt. Express 14(2), 767–772 (2006). [CrossRef] [PubMed]
  6. T. F. Refaat, M. N. Abedin, G. J. Koch, S. Ismail, and U. Singh, “Infrared Detectors Characterization for CO2 DIAL Measurement,” Proc. SPIE 5154 Lidar Remote Sensing for Environmental Monitoring IV, 65–73 (2003).
  7. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, 1999).
  8. N. K. Dutta, and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, 2006).
  9. E. Nisbet and R. Weiss, “Atmospheric science: top-down versus bottom-up,” Science 328(5983), 1241–1243 (2010). [CrossRef] [PubMed]
  10. B. B. Stephens, K. R. Gurney, P. P. Tans, C. Sweeney, W. Peters, L. Bruhwiler, P. Ciais, M. Ramonet, P. Bousquet, T. Nakazawa, S. Aoki, T. Machida, G. Inoue, N. Vinnichenko, J. Lloyd, A. Jordan, M. Heimann, O. Shibistova, R. L. Langenfelds, L. P. Steele, R. J. Francey, and A. S. Denning, “Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2.,” Science 316(5832), 1732–1735 (2007). [CrossRef] [PubMed]
  11. S. L. Lewis, G. Lopez-Gonzalez, B. Sonké, K. Affum-Baffoe, T. R. Baker, L. O. Ojo, O. L. Phillips, J. M. Reitsma, L. White, J. A. Comiskey, M. N. Djuikouo K, C. E. N. Ewango, T. R. Feldpausch, A. C. Hamilton, M. Gloor, T. Hart, A. Hladik, J. Lloyd, J. C. Lovett, J.-R. Makana, Y. Malhi, F. M. Mbago, H. J. Ndangalasi, J. Peacock, K. S.-H. Peh, D. Sheil, T. Sunderland, M. D. Swaine, J. Taplin, D. Taylor, S. C. Thomas, R. Votere, and H. Wöll, “Increasing carbon storage in intact African tropical forests,” Nature 457(7232), 1003–1006 (2009). [CrossRef] [PubMed]
  12. S. Piao, J. Fang, P. Ciais, P. Peylin, Y. Huang, S. Sitch, and T. Wang, “The carbon balance of terrestrial ecosystems in China,” Nature 458(7241), 1009–1013 (2009). [CrossRef] [PubMed]
  13. W. Peters, A. R. Jacobson, C. Sweeney, A. E. Andrews, T. J. Conway, K. Masarie, J. B. Miller, L. M. P. Bruhwiler, G. Pétron, A. I. Hirsch, D. E. J. Worthy, G. R. van der Werf, J. T. Randerson, P. O. Wennberg, M. C. Krol, and P. P. Tans, “An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18925–18930 (2007). [CrossRef] [PubMed]
  14. G. R. van der Werf, D. C. Morton, R. S. DeFries, J. G. J. Olivier, P. S. Kasibhatla, R. B. Jackson, G. J. Collatz, and J. T. Randerson, “CO2 emissions from forest loss,” Nat. Geosci. 2(11), 737–738 (2009). [CrossRef]
  15. M. O. Andreae and P. Merlet, “Emission of trace gases and aerosols from biomass burning,” Global Biogeochem. Cycles 15(4), 955–966 (2001). [CrossRef]
  16. A. Lavrov, A. B. Utkin, R. Vilar, and A. Fernandes, “Applications of lidar in ultraviolet, visible, and infrared ranges for early forest fire detection,” Appl. Phys. B 76(1), 87–95 (2003). [CrossRef]
  17. J. S. Gregg, L. M. Losey, R. J. Andres, T. J. Blasing, and G. Marland, “The Temporal and Spatial Distribution of Carbon Dioxide Emissions from Fossil-Fuel Use in North America,” J. Appl. Meteorol. Climatol. 48(12), 2528–2542 (2009). [CrossRef]
  18. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42(33), 6569–6577 (2003). [CrossRef] [PubMed]
  19. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009). [CrossRef]
  20. J. Boggio, S. Moro, B. P.-P. Kuo, N. Alic, B. Stossel, and S. Radic, “Tunable Parametric All-Fiber Short-Wavelength IR Transmitter,” J. Lightwave Technol. 28(4), 443–447 (2010). [CrossRef]
  21. B. P.-P. Kuo, A. O. J. Wiberg, E. Myslivets, D. Blessing, N. Alic, and S. Radic, “Widely-Tunable, Multi-Wavelength Short Wave Infrared Light Source based on Fiber Optical Parametric Oscillator,” in Proc. OFC/NFOEC 2010, San Diego, CA, paper OThA5 (2010).
  22. E. Myslivets, N. Alic, and S. Radic, “Spatially Resolved Measurement in Waveguides With Arbitrary Chromatic Dispersion,” IEEE Photon. Technol. Lett. 20(21), 1793–1795 (2008). [CrossRef]
  23. J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010). [CrossRef] [PubMed]
  24. R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, and S. Radic, “Continuous-Wave Band Translation Between the Near-Infrared and Visible Spectral Ranges,” J. Lightwave Technol. 25(1), 58–66 (2007). [CrossRef]
  25. R. Jiang, C.-S. Bres, N. Alic, E. Myslivets, and S. Radic, “Translation of Gbps Phase-Modulated Optical Signal From Near-Infrared to Visible Band,” J. Lightwave Technol. 26(1), 131–137 (2008). [CrossRef]
  26. C. J. McKinstrie, M. Yu, M. G. Raymer, and S. Radic, “Quantum noise properties of parametric processes,” Opt. Express 13(13), 4986–5012 (2005). [CrossRef] [PubMed]
  27. S. Moro, A. Peric, N. Alic, C. J. McKinstrie, and S. Radic, “Experimental Demonstration of a Low-Noise-Figure Phase-Insensitive Parametric Amplifier,” IEEE Photonics Society 2010 Annual Meeting, Denver, CO, paper WN3 (2010).
  28. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Opt. Lett. 21(24), 1966–1968 (1996). [CrossRef] [PubMed]
  29. F. Gholami, J. M. Chavez Boggio, S. Moro, N. Alic, and S. Radic, “Measurement of ultra-low fourth order dispersion coefficient in nonlinear fiber by distant low-power FWM,” IEEE Photonics Society Summer Topical Meeting, paper WC1.1, Playa Del Carmen, Mexico (2010).
  30. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-Band Tuning of the Gain Spectra of One-Pump Fiber Optical Parametric Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004). [CrossRef]
  31. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009). [CrossRef]
  32. V. A. Kovalev, and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley, 2004), Ch. 7.
  33. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46(11), 1953–1962 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited